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ABSTRACT
Federated Learning was deemed as a private distributed learning
framework due to the separation of data from the central server.
However, recent works have shown that privacy attacks can ex-
tract various forms of private information from legacy federated
learning. Previous literature describe differential privacy to be effec-
tive against membership inference attacks and attribute inference
attacks, but our experiments show them to be vulnerable against
reconstruction attacks. To understand this outcome, we execute a
systematic study of privacy attacks from the standpoint of privacy.
The privacy characteristics that reconstruction attacks infringe are
different from other privacy attacks, and we suggest that privacy
breach occurred at different levels. From our study, reconstruction
attack defense methods entail heavy computation or communica-
tion costs. To this end, we propose Fragmented Federated Learning
(FFL), a lightweight solution against reconstruction attacks. This
framework utilizes a simple yet novel gradient obscuring algorithm
based on a newly proposed concept called the global gradient and
determines which layers are safe for submission to the server. We
show empirically in diverse settings that our framework improves
practical data privacy of clients in federated learning with an ac-
ceptable performance trade-off without increasing communication
cost. We aim to provide a new perspective to privacy in federated
learning and hope this privacy differentiation can improve future
privacy-preserving methods.
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1 INTRODUCTION
Various incidents of data compromise made data privacy an impor-
tant issue in deep learning. Traditional machine learning models
have training and testing carried out in the same machine, and the
model will use data for learning on the same machine. To incorpo-
rate data privacy to deep learning, federated learning (FL) emerged
as a private data learning framework by separating data storage
and actual model learning [33].
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Figure 1: Reconstruction attacks on differentially private
models [23] of CIFAR-10. Models were trained under the
privacy budget of 𝜖 = 8.

This seemingly secure framework, however, holds vulnerabili-
ties to privacy attacks: attacks aiming at leaking private informa-
tion [25, 53, 72]. Although the server does not have direct access to
the clients’ data, the model may leak information regarding mem-
bership or unseen attribute information [21, 44, 49, 56, 58]. The
most critical form of attack utilizing these vulnerabilities are re-
construction attacks, in which previous studies have shown that
from the gradient information, train data of the model can be re-
constructed [22, 64, 72]. According to these studies, if the central
server were to be malicious with the intent on compromising the
privacy of its clients, it could do so without direct access to the data
and rely on optimization techniques to backtrack and reconstruct
the private data.

Due to these threats extracting private information,many privacy-
preservation techniques were developed. A prominent privacy-
preserving method is differential privacy. Differential privacy [16]
is a theoretical approach to quantifying information leakage and
offers privacy guarantees. In differential privacy, each client’s pri-
vacy is preserved by adding noise to sensitive attributes. Differential
privacy is known to be an effective form of defense against member-
ship inference attacks [44, 70]. On the other hand, reconstruction
attacks on differentially private models are shown to be successful
(Figure 1), explained in Section 5.

Owing to this contrasting result, we execute a systematic study
on privacy attacks focusing on the privacy aspect: are different forms
of privacy attacked? In our study, we dissect privacy attacks and
identify the different levels of privacy into two classes: disclosure
privacy and distinctive privacy. Disclosure privacy describes the
right that unintended information must not be leaked from the
collaborative result, and distinctive privacy describes the right to
keep raw data undisclosed (presented in Section 2.3).

By investigating this differentiation of privacy, we find that al-
though existing privacy-preserving methods can preserve disclo-
sure privacy, existing techniques enforcing distinctive privacy incur
heavy computation or communication overhead. Examples are se-
cure multi-party computation protocols that use key encryption
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schemes to provide privacy [27, 61, 66]. Furthermore, reduction
of communication cost is an important factor in FL. Literature on
communication cost explore faster training (convergence in fewer
number of iterations) [41, 43, 63, 69] and compression of transmitted
data [6, 34, 38, 51, 54].

Establishing this as motivation, we propose the problem of ob-
scuring client gradients, specifically designed to preserve distinctive
privacy while maintaining low communication cost for practical FL.
As a solution to this problem, we propose Fragmented Federated
Learning (FFL), a light FL framework designed to preserve distinc-
tive privacy by employing a gradient obscuring algorithm on the
calculated gradient of each client.

FFL is adjustable, by allowing a hyperparameter 𝑟 to manage
between the defense capability of the obscured gradient and the
resulting model performance. In the most conservative settings of
𝑟 , FFL shows to be the most effective in preventing reconstruction
attacks when compared to differential privacy [23] and gradient
compression [38]. FFL also bears no additional communication cost
compared to the general concept of FL. The clients only undergo a
similarity calculation cost of𝑂 (𝑛), where 𝑛 is the size of the model.
This overhead, compared to the inevitable training calculations of
the model, can be deemed trivial.

Our contributions are as follows:

• We conduct a holistic study by dissecting privacy attacks in
FL. From this study, we deduce and introduce two divisions
of privacy in FL: disclosure privacy and distinctive privacy.
• We classify existing privacy-preserving techniques by the
form of privacy they preserve, and reveal the shared prob-
lems of distinctive-privacy-preserving techniques and adopt
this as our problem-of-interest.
• We propose a new problem of obscuring client gradients ad-
dressing reconstruction attacks by gradient and propose FFL,
a practical FL framework that utilizes fragmentation opera-
tions to preserve distinctive privacy, as a proper solution to
the problem.

2 BREAKDOWN OF PRIVACY IN FEDERATED
LEARNING

2.1 Federated Learning (FL)
Federated learning is a machine learning technique that trains a
model across many clients with their respective data to guarantee
data privacy [33, 34]. The central server provides its clients with
the training model, and clients calculate the gradient in their own
local environment using their private data; each client’s data are
not shared with the central server. The clients upload the update
information to the central server, where the server aggregates this
information and updates the model. This process is repeated.

In the distributed setting of FL, the update information is the
calculated gradient information of each client. The aggregation
of the 𝑁 client gradients and the model (\ ) update is indicated
in Equation (1), a procedure called federated stochastic gradient
descent.∇\𝐿\𝑘 (𝑥𝑖 , 𝑦𝑖 ) refers to the gradient calculated on themodel
\ using the training data (𝑥𝑖 , 𝑦𝑖 ) of client 𝑖 at step 𝑘 .

\𝑘+1 = \𝑘 − 𝛾
𝑁∑︁
𝑖=1
∇\𝐿\𝑘 (𝑥𝑖 , 𝑦𝑖 ) (1)

FL is known for this separation of training and model update; the
location where the model is trained is the client’s local environment,
whereas the location of the model update is the central server. This
separation of data in FL maintains the client’s private data to be
remote and unreachable by the central server. Accordingly, FL has
been implemented in fields handling sensitive data (e.g., loan risk,
medical imaging, financial payments [28, 30, 68]).

2.2 Dissection of Privacy Attacks
In this section, we present a breakdown of privacy attacks in FL and
reconsider reconstruction attacks from the standpoint of privacy.
Privacy attacks are designed on extracting undisclosed information
of the data that a target machine learning model was trained on.
Privacy attacks in FL are applicable by both client and server of
FL. The three forms of privacy attacks considered are membership
inference attacks, attribute inference attacks, and reconstruction
attacks and they will be examined under the three attributes of ex-
traction extent, transferability, and source. Note that privacy attacks
in FL are a subset of inference attacks [40], where model stealing is
excluded due to its irrelevance to client privacy.
Extraction Extent: Depending on the privacy breach, the content
of the leaked information may differ. In this context, we determine
the actual data used in training (ultimately the most private infor-
mation of an individual) as the raw data, and any other form of
private information to be private meta-information.
Transferability:A privacy attack is transferable if the attack can be
applied to other data units without change (a single model used for
multiple attacks); it is intransferable if the attack must be conducted
(retrained) for each instance.
Source: To extract information, privacy attacks must take advan-
tage of an information source. This refers to the object or source
of private data leakage: the object to secure for attack prevention.
The location of this source is the entry point of the attacker.

2.2.1 Membership Inference Attacks (MIA). A form of privacy at-
tack that aims to determine the participation of a data sample in
training is referred to as a membership inference attack (MIA) [56].
The information of a data point’s participation in training can lead
to derivations of an individual’s private information. For example,
by attacking machine learning models trained on medical data such
as drug dose prediction, an attacker could deduce health informa-
tion of a participant. Although an authentic infringement of privacy,
the extraction extent of MIA do not reach the level of raw data.
Membership information is a form of private meta-information.
Note that this leak of private meta-information through MIA are
viewed as gateways to further attacks [13], and that we are not
depreciating the breach in privacy by membership inference.

As an extensively studied field of attack, the methods take ad-
vantage of the classifier’s generalization gap on the train and test
data [53, 56, 70]. Attackers determine this gap by gathering aux-
iliary datasets (called the shadow datasets) that best mimic the
distribution of the train data and test data. Once trained on the
shadow datasets, attacks can be carried out on data pieces to predict
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Table 1: FL privacy attacks and their attributes.

Privacy Attack Description Extraction Extent Transferability Source

MIA from model parameters \ , leak membership info. of data point 𝑥 Meta-info. Transferable \

AIA from model parameters \ , leak attribute info. of data point 𝑥 Meta-info. Transferable \

Recon. Attack from gradient ∇ and model parameters \ , reconstruct data point 𝑥 Raw data Intransferable ∇

membership. Because a membership inference model can be reused
without change for different data pieces, they are transferable.

MIA utilize the different behavior of the model when input train
and test data. Most methods use the distribution differences of
the logit information of these respective data [56, 59, 70], with
some approaches using additional information such as the mid-
network latent information for richer context [36, 49]. Nevertheless,
the source in MIA are model weights. Any node with possession
of the model weights are capable of these attacks; membership
information can be extracted by all clients and even the server.

2.2.2 Attribute Inference Attacks (AIA). The goal of attribute in-
ference attacks are to exploit unseen attributes of the data that is
unrelated to the original task, often called the re-purposing of a
model. Previous studies were able to infer the race information of
human photos from a model trained with the task of predicting
age [44, 58]. Similar to MIA, attribute inference attacks (AIA) aim
to leak not the specific train data but a different form of private
information, so the extraction extent is at meta-information level.

AIA are also transferable attacks. The training of an attribute
inference model requires a black box oracle to build an auxiliary
dataset that maps the the embedding through the target model with
the attribute-in-interest [58]. Once the attack model is trained for re-
purposing, this model can be used to discover the wanted attribute
information from target data points. With respect to the same
attribute information AIA are transferable; extracting information
of a different attribute requires training of a new AIA.

Two main components that make AIA plausible are the existence
of an oracle for auxiliary dataset generation and the model parame-
ters. Despite the fact that these two components are both crucial,
the oracle is an item that is irrelevant with the FL procedure. As
the possession/prevention of an oracle is out-of-scope, the target
model is the source of an AIA. As a matter of fact, defense methods
for attribute inference methods involve making the model more
robust–censoring representations by employingmini-max games or
information-theoretical optimizations [11, 17, 47]. These algorithms
encode data points into embeddings that do not reveal unwanted
attributes, yet sufficiently representative for proper functionality.
Similar to membership inference attacks, AIA can be conducted in
both server and client.

2.2.3 Reconstruction Attacks. Despite the private impression of
FL, recent studies have exposed its vulnerability to reconstruction
attacks [22, 64, 72]. The objective of reconstruction attacks is to
reconstruct the original data from the description and auxiliary
information of the model [20] and therefore the extraction extent
is raw data. The problem of data reconstruction is a more difficult
and threatening attack compared to the retrieval of membership or
attribute information.

Reconstruction attacks specific to FL recover the input image
by minimizing the distance between the input gradient and the

sample image gradient. The works differ in the selected metric of
distance: Euclidean matching [64, 72] or cosine similarity [22], with
cosine similarity being more successful. Equation (2) is the objective
function used for reconstruction by cosine distance, where 𝑥∗ refers
to the original image. The regularization term 𝑇𝑉 stands for total
variation [42] and encourages spatial smoothness to the image. The
optimization problems can be solved by an L-BFGS solver [39], but
Geiping et al. [22] improve reconstruction quality using ADAM [32]
and qualitatively demonstrated the successful reconstruction of
training data. Equation 2 needs to be re-optimized for a different
data piece 𝑥 (different attack instance), so reconstruction attacks
are intransferable.

argmin
𝑥

1 −
⟨∇\𝐿\𝑘 (𝑥,𝑦),∇\𝐿\𝑘 (𝑥∗, 𝑦)⟩
∥∇\𝐿\𝑘 (𝑥,𝑦)∥∥∇\𝐿\𝑘 (𝑥∗, 𝑦)∥

+ 𝛼𝑇𝑉 (𝑥) (2)

The two materials for reconstruction attacks are the model pa-
rameters and the target gradient. According to [22, 72] however,
reconstruction attacks were successful even when using randomly-
initialized model weights and the target gradient. This signified
that although using trained models did show better reconstruction
performance, it may not be required in reconstruction optimization.
This demonstrates that reconstruction attacks are target-gradient-
centric and that the target gradient is the source of information
leakage. The location of reconstruction attacks are therefore unique
to the server (the owner of the gradient is a victim and cannot be
the attacker).

Table 1 summarizes the privacy attacks by their attributes. From
this dissection of privacy attacks in FL by their attributes, we can
conclude that reconstruction attacks need to be considered differently.

2.3 Differentiation of Privacy
This isolation of reconstruction attacks from MIA and AIA signifies
contrasting forms of privacy infringement. By backtracking the
attributes of privacy attacks, the agenda of privacy attacks can be
represented into two planes of privacy shown in Figure 2.

The upper layer of attacks leak private meta-information sourced
from the resulting model of the distributed system. In a central
distributed system (e.g. FL), the service provider holds the respon-
sibility of ensuring privacy of the clients. Specifically, the clients’
private information should not be able to be deduced from any
resulting outcome of the system (e.g. trained model). We label this
form of privacy that the service provider bestows on the collab-
orative result as disclosure privacy. In FL, providing disclosure
privacy would strengthen the robustness of the resulting model
weights from privacy attacks.

Reconstruction attacks take advantage of already leaked pri-
vate meta-information to access the private raw data. Let us take
a conceptual analogy of this lower level privacy attack. Assume
that password information of clients (private meta-information)
of an electronic mail service were leaked. An attacker could use
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this password information to access the mail contents (private raw
data). Unlike common users who would be vulnerable to this recon-
struction attack, a client concerned with their privacy could have
been periodically updating their password for enhanced security
and prevent this attack by making the leaked meta-information
obsolete. Like this particular user’s proactive practice, private meta-
information should not be distinctive enough to characterize private
raw data. Preserving distinctive privacy is the act of guarding
private meta-information to prevent further raw data leaks. Specif-
ically in FL, providing distinctive privacy would strengthen the
robustness of the gradient so that reconstruction attacks fail.

The main contrast between disclosure privacy and distinctive
privacy arise from knowledge of the victim. Disclosure privacy and
their attacks are not associated with ownership of the data. Private
meta-information from these attacks, in the case it is leaked, cannot
be identified to be a certain clients’ information, and neither do
they intend on identifying who’s privacy was breached. On the
other hand, distinctive privacy and their attacks are targetted at
the owner of the gradient information. Distinctive privacy acts to
prohibit this form of targeted privacy leak of the specific individual.

But isn’t disclosure privacy enough? Following the privacy attack
agenda of Figure 2, if disclosure privacy was preserved, there would
be no leak of private meta-information nullifying reconstruction
attacks. In other words, if disclosure privacy is preserved, distinctive
privacy is naturally preserved as well. But in the exclusive case of FL,
disclosure privacy and distinctive privacy observe to be orthogonal
due to an attacker that can evade disclosure privacy protection and
manage to access private meta-information (gradient information).
This is the case of an honest-but-curious server.
Honest-But-Curious Server: Similar to the characterization of
honest-but-curious servers in various works [8, 9, 50], this setting
describes a server that takes advantage of the client’s private data
(gradients) and exploits it without disrupting the overall protocol
(collaborative learning algorithm). This means that the server may
not modify or swap the model parameters to malicious parame-
ters better suited for their attack, and the server should faithfully
perform its duty as the central server and properly update and dis-
tribute the model weights after aggregating the client gradients. For
the rest of the paper, the honest-but-curious server will be referred
to as the attacker; any instance of the word server will refer to a
general honest server.

By participating in FL, the attacker will fulfill its duty as the
server and partake in the proper training of the model. In this pro-
cess, it will collect gradient information directly from the clients,
and therefore private meta-information will be exposed to the at-
tacker despite any disclosure privacy preservation attempts–the
attacker is not manipulating the model weights in any sort. This
is a systemic loophole created by the position of an honest-but-
curious server; the server is bound to collect the gradient infor-
mation of clients. Distinctive privacy attacks are internal attacks
being launched from inside the boundaries of disclosure privacy
(Figure 2 shows that the reconstruction attacker is placed within the
bounds of disclosure privacy). Note that the attacker will not only
receive gradient information, it will know the ownership of this
private meta-information. Therefore, the attacker holds potential of
targeting and threatening each and every client of their distinctive
privacy.

Meta-information

Disclosure Privacy [1, 16, 23, 44, 70]

FL Model

Membership Inference Attack [13, 36, 49, 53, 56, 59, 70]
Attribute Inference Attack [11, 17, 44, 47, 58]

Reconstruction Attack [20, 22, 64, 72]

•Gradient info.•Membership, Attribute info.

Distinctive Privacy [FFL]

Raw data

Figure 2: Breakdown of privacy attacks. To the right are ci-
tations that refer to the respective concept. We propose FFL
for preserving distinctive privacy.

2.4 Privacy Preserving Methods
The privacy concerns of FL has caused the development of many
techniques to improve privacy of the trained models. The most
representative types of privacy preserving methods are differential
privacy and secure multiparty computations.

2.4.1 Differential Privacy (DP). Differential privacy [16] is a the-
oretical approach to quantifying information leakage and offers
privacy guarantees. It employs a randomized mechanism into the
learning process and is defined as such:

Definition 1 (Differential Privacy). A randomized mechanism
M : D → R with domainD and rangeR satisfies (𝜖, 𝛿)-differential
privacy if for any two adjacent inputs 𝑑, 𝑑′ ∈ D and for any subset
of outputs 𝑆 ⊆ R it holds that

𝑃𝑟 [M(𝑑) ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟 [M(𝑑′) ∈ 𝑆] + 𝛿 (3)

Differential privacy guarantees that the probability of harm will
not be significantly increased by one’s choice to participate in the
random mechanism. Hence, given the setting of (𝜖, 𝛿), differen-
tial privacy guarantees the result (trained model) of the random
mechanism will be the same whether a data piece is included or
not. Conceptually, differential privacy is a method that secures the
model from leaking information on the respective data piece’s con-
tribution (private meta-information). Coincidentally, membership
inference attack works discuss differential privacy as a possible
defense mechanism [44, 70].

The implementation of differential privacy does include mod-
ification to the gradient information. This distortion consists of
clipping to satisfy the sensitivity of Equation 3 and adding random
noise [1, 23]. The purpose of this step, however, is not specifically to
discourage the optimization of reconstruction attacks and is insuffi-
cient in doing so (Figure 1), evaluated later in Section 6. Differential
privacy cannot be a form of preserving distinctive privacy.

2.4.2 SMCProtocols. Works incorporating securemulti-party com-
putation (SMC) protocols use key encryption schemes to prevent
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leaking of additional knowledge and provide strong privacy guar-
antees, but incur heavy computation and communication costs due
to the overhead caused by the added complication by the proto-
col [27, 61, 66]. These schemes pose an overhead that limits the
scalability of SMC frameworks for FL, and also are unsuitable for
dealing with the flexible nature of real world application clients
where the number of clients fluctuate depending on uncontrollable
factors such as poor connectivity or low power [57].

Regarding this communication burden, many studies investi-
gated methods of reducing communication cost. Largely explored
methods elicit higher quality update information and train the
model in a fewer number of iterations [41, 43, 63, 69] or compress
the data to be transmitted in communication and scale down the
total transfer size in FL [6, 34, 38, 51, 54]. Specifically for SMC,
SAFELearn [19] provides efficient secure aggregation, requiring
2 rounds of communication for each training iteration (minimal
considering previous SMC works).

By encrypting transmitted information (e.g. gradient informa-
tion), they preserve distinctive privacy by preventing access to
gradient information. Despite the many efforts of minimizing addi-
tional computation and communication overhead, due to the nature
of encryption, one training round inevitably requiresmultiple round
of communication. Conceptually similar to SMC protocols in terms
of isolation of private data, works using trusted execution environ-
ments (TEE) for secure FL also isolate the attacker from gaining
access to gradient information [46] without additional communica-
tion rounds. Unfortunately, TEE suffers from major latency issues
caused by its cryptographic authentication protocol [52].

By differentiating the privacy of FL, we cross-check privacy-
preserving methods and find that we require a light means of pre-
serving distinctive privacy.

3 PROBLEM STATEMENT
3.1 Problem Formulation
Acknowledging this dilemma of distinctive privacy being accom-
panied with excessive communication and computation costs, we
wish to explore a concise means to preserve distinctive privacy.
Viewing reconstruction by gradient as the attack-of-interest, our
work investigates the threat model of an honest-but-curious server
as the adversary/attacker described in Section 2.3.

Given the threat model for reconstruction attacks, to preserve
distinctive privacy, clients in FL must protect their gradient infor-
mation from the attacker using its provided allocations. It is crucial
for any defense mechanism to work under the core FL scheme
when considering the communication cost and applicability of the
solution. Therefore, the defense should be devised by the already
provided allocations to the client. A client’s allocations can be de-
fined as below.

Definition 2 (Allocations of FL client). A client will receive and
therefore have access to the FL model parameters \𝑘 at training
round 𝑘 . The set of these parameters A = {\𝑘 : 𝑘 ≥ 1} are the
allocations of an FL client.

Using these conventional allocations that are the byproduct of
FL training rounds, a client must devise a function to protect its
gradients. In addition to reconstruction attack defense capability,

the mechanism of defense should refrain from increasing communi-
cation costs. Like any security application, there exists an inevitable
trade-off between performance and privacy protection levels [65].
If tradeoff is unavoidable, there should at least be a means to control
this; privacy protection with respect to model performance should
be able to be strengthened or relaxed. These requirements lead to
our problem definition below:

Problem 1 (Obscuring Client Gradients). Let ∇\𝐿\𝑘 (𝑥,𝑦) be the
gradient calculated from the given neural network parameters \𝑘
and private labeled data (𝑥,𝑦). Obscuring client gradients is to
find a function 𝑓 that when input the gradient ∇\𝐿\𝑘 (𝑥,𝑦) and
the allocations A, returns an obscured gradient that satisfies the
following conditions:
(c1) 𝑋 (𝑅𝑒𝑐𝑜𝑛(𝑓 (∇\𝐿\𝑘 ,A))) > 𝑋 (𝑅𝑒𝑐𝑜𝑛(∇\𝐿\𝑘 )), where 𝑋 is a

measure of defense capability (e.g. MSE) and 𝑅𝑒𝑐𝑜𝑛 is the
image reconstruction.

(c2) 𝐶𝑜𝑠𝑡 (𝑓 (∇\𝐿\𝑘 ,A)) ≤ 𝐶𝑜𝑠𝑡 (∇\𝐿\𝑘 ), where 𝐶𝑜𝑠𝑡 is the com-
munication cost (bits) in transmission.

(c3) Allows the adjustment in the trade-off between model perfor-
mance and defense capability.

We draw the attention of the reader to two important aspects of
Problem 1. First, the defense capability mentioned in condition (c1)
is a practical measure of defense success. It is the actual empirical
statistic of penetration tests, different from the theoretic privacy
bound of differntial privacy, which is set in advance. As a bottom-up
approach, the defense capability of condition (c1) ensures specificity
to reconstruction attacks in Problem 1, and thereof, distinctive
privacy is preserved. More details are in Section 5.3.

Another point is at the location of 𝑓 being at the client-side. 𝑓
obscures the raw gradient into an obscured gradient that is difficult
to reproduce reconstruction attacks with. Only after obscuring
the gradient does a client send the information to the server. This
depicts client-owned protection by endowing clients with their own
ability to secure their own private data. In other words, clients do
not have to rely on a third party for data privacy (e.g., differential
privacy methods [5, 67]).

The process of differential privacy necessitates the clients to
trust the server with their raw gradients. In differential privacy
settings, the server inspects the clients’ gradient information and
alters the client gradients so that the trained model would expose
minimal information on the individual clients [67]. This exposure
of raw gradients is a liability allowing the server to potentially
reconstruct private data. Therefore, client-owned protection is a
major advantage in privacy as it restricts the accessibility of the
gradient and minimizes leakage.

We concentrate on designing this obscuring function 𝑓 that pro-
vides client-owned protection, and our results will aim to validate
our implementation of 𝑓 .

4 FRAGMENTED FEDERATED LEARNING
The feasibility of reconstruction attacks implies the significant
amount of underlying information the gradient represents of the
clients’ private data. Our defense method Fragmented Federated
Learning (FFL) designs the obscuring function 𝑓 based on the above-
mentioned premise. Gradients are perceived as representations of
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private meta-information, and the clients select and send the secure
gradient layers based on the obscuring function to the central server.

In this section, we define the global gradient, which becomes the
standard of comparison for selecting secure layers and explain the
obscuring function algorithm and the total procedure of FFL.

4.1 Global Gradient
Due to the distributed foundation of FL, a model can be trained on
a more general distribution of data. The aggregation of gradients
(Equation 1) enhances the generalization of the training model
by introducing update information on a global data collection. In
this aspect, we refer to this sum

∑𝑁
𝑖=1 ∇\𝐿\𝑘 (𝑥𝑖 , 𝑦𝑖 ) as the global

gradient. The global gradient reduces the bias of each client’s private
data on the overall model by representing the whole client data.

The central server can calculate the global gradient accurately
by aggregating gradient information from all the clients. Unlike
the server, each client has no access to gradients from other clients
in a centralized setting. The naive action of a server providing the
global gradient information to clients would naturally be to offer
the aggregated global gradient to the clients along with the model
parameters. But this approach entails two crucial problems:

(1) Communication cost is doubled.
(2) It cannot be derived from the client’s allocations A.

Any unnecessary expansion in communication cost must be
avoided to be a practical FL solution. Furthermore, the global gra-
dient does not pertain to the provided allocations of an FL client
mentioned in Problem 1. Therefore, we approximate the global
gradient in the clients’ local environment.

The global gradient is estimated as the difference between the
current model received from the central server and the previous
model from supplementary storage by the Global Gradient Estima-
tor in Figure 3. Suppose that a client receives model weights \𝑘 and
\𝑘−1 from the server at time 𝑡𝑘 and 𝑡𝑘−1 respectively. Then,

\𝑘 − \𝑘−1 = 𝛾
∑︁

𝑖∈𝐶𝑘,𝑘−1

∇𝐿\ (𝑥𝑖 , 𝑦𝑖 ) (4)

where 𝐶𝑘,𝑘−1 represents the set of clients that participated in FL
during time interval [𝑡𝑘−1, 𝑡𝑘 ] and 𝛾 is the learning rate. For each
round of model update in FL, not all the clients are always available,
and the gradients of only a sample of the total clients are used for
update. Due to this random sampling of clients, if all the clients
uniformly access the server and are used for model update, then
the expected value of the approximation becomes:

E[\𝑘 − \𝑘−1] = 𝛾

𝑁∑︁
𝑖=1
∇𝐿\ (𝑥𝑖 , 𝑦𝑖 ) (5)

This approximatingmechanism is carried out in the Global Gradient
Estimator as the difference between the parameters of the current
model and the parameters of the previous model.

This simple global gradient estimation method elegantly handles
both problems mentioned by the naive approach. Approximation
involves only the current model weights that the client receives
from the server, and the previous model weights, which were stored
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Global 
Gradient
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Current Model θk

Update Info. ∇θL

Global Gradient
Estimator

User

Gradient of Secure Layers ϕk

FFL
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θk

FFL Obscuring Module

Supplementary
Storage

Security Score 
Assessment

Layer Selection

k

Figure 3: Workflow of FFL Framework. The blue dotted line
shows the workflow of what would have been legacy FL,
and the red line shows the workflow of FFL. FFL adds an
Obscuring Module on to legacy FL, making it lightweight.

in the Supplementary Storage from a previous round of FL. There-
fore this estimation method introduces no further communication
cost and can also be derived from the allocations A.

4.2 Gradient Obscuring in FFL
Based on the concept of global gradient, comparison with the global
gradient indicates how close the client’s private data distribution
is with the general data distribution. Being closer to this general
data distribution would imply less distinction of a client’s private
data, and therefore be more secure. High similarity between the
layers of a client’s gradient and the global gradient indicates a
more generality in update information—lower vulnerability when
exposed to the central server. Low similarity between the gradient
and global gradient layers indicates a stronger presence of the
client’s private data—higher vulnerability when exposed to the
central server. Based on this core foundation of selecting secure
layers for distinctive privacy, we define 𝑓 as such:

Definition 3 (Obscuring function 𝑓 ). Let \𝑘 = {𝐿𝑘
𝑖
: 𝑖 ≤ 𝑛} be the

model parameters where 𝐿𝑘
𝑖
denotes the parameters in the 𝑖-th layer

of the model at round 𝑘 and ∇𝑘
𝑔𝑙𝑜𝑏𝑎𝑙

= \𝑘 −\𝑘−1 be the global gradi-
ent. For ∇𝑘

𝑔𝑙𝑜𝑏𝑎𝑙
and input gradient ∇\𝐿\𝑘 , the obscuring function

𝑓 returns 𝜙𝑘 , the layers of the input gradient with higher cosine
similarity to ∇𝑘

𝑔𝑙𝑜𝑏𝑎𝑙
where 𝜙𝑘 ⊂ ∇\𝐿\𝑘 . The number of layers to

send to the server are predefined as a hyperparameter, layer ratio 𝑟 .

Note that because we use cosine similarity as the similarity
measure, 𝛾 can be ignored in Equation 5 and that the input gradient
has the same shape as the model parameters (i.e. set of layers).

By employing the estimation of global gradient in FFL, the pro-
posed obscuring function of Definition 3 becomes a solution to
Problem 1. We will show through empirical evaluation that the
conditions of Problem 1 are satisfied by Definition 3 in Section 6.

The visualized process of FFL is shown in Figure 3. The process
of legacy FL is shown in the blue dotted line and the additions of FFL
are shown in the red lines. Each client will receive the model and
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Algorithm 1 Obscuring Function 𝑓 of a Client in FFL

Input: Current Model Parameters \𝑘 , Previous Model Parameters
\𝑘−1, Maximum Number of Rounds 𝑇 , Layer Ratio 𝑟 , Client
Data 𝑑𝑖 , s=[]

Output: Gradient Layers 𝜙𝑘 ⊂ ∇\𝐿\𝑘
1: while 𝑘 ≤ 𝑇 do
2: calculate ∇\𝐿\𝑘 on 𝑑𝑖
3: ∇𝑘

𝑔𝑙𝑜𝑏𝑎𝑙
= \𝑘 − \𝑘−1

⊲ estimate Global Gradient
4: for each 𝑙-th layer do
5: sim← ⟨∇\𝐿\𝑘 [𝑙],∇𝑘𝑔𝑙𝑜𝑏𝑎𝑙 [𝑙]⟩
6: sim← sim/(∥∇\𝐿\𝑘 [𝑙] ∥∥∇𝑘𝑔𝑙𝑜𝑏𝑎𝑙 [𝑙] ∥)

⊲ calculate cosine similarity
7: s← append( (𝑙, sim) )
8: end for
9: sort(s) in descending order of sim values
10: truncate s with length 𝑙𝑡𝑟𝑢𝑛𝑐 = ⌈𝑟 × len(s)⌉
11: 𝑠𝑡𝑟𝑢𝑛𝑐 = {𝑙 | 𝑠 [𝑙] [0], 𝑙 ≤ 𝑙𝑡𝑟𝑢𝑛𝑐 }
12: 𝜙𝑘 = {∇\𝐿\𝑘 [𝑖] | 𝑖 ∈ 𝑠𝑡𝑟𝑢𝑛𝑐 }

⊲ obscured gradient
13: \𝑘−1 ← \𝑘

⊲ update Supplementary Storage
14: return 𝜙𝑘 and 𝑠𝑡𝑟𝑢𝑛𝑐

⊲ transmit obscured gradient and indices to server
15: end while

train this model with their private data. The calculated gradient will
then be forwarded for Security Score Assessment. In the meanwhile,
the Supplementary Storage holds the previous model parameters
that will be utilized for global gradient estimation, explained in
Section 4.1. The Global Gradient Estimator calculates the difference
between model parameters of the current model, received from this
iteration, with the previous model of the Supplementary Storage.

The Security Score Assessment calculates the layer-wise sim-
ilarities of the global gradient and update information by cosine
similarity. These similarity values are used to rank the more secure
layers of the update information. Layer Selection selects the most
secure layers with least probability of exposing personal informa-
tion, and are submitted to the central server. The procedure of the
obscuring function 𝑓 in FFL is shown in Algorithm 1.

4.3 Benefits of Layer-wise Obscuring of
Gradient

The obscuring algorithm of FFL introduces additional security steps
that provide protection from reconstruction attacks by evenly dis-
tributing the burden to the computational cost of individual clients.

The computations that are added by FFL for each client are
1) similarity computations and 2) a sorting function to rank the
layer indices by security scores. The time complexity of cosine
similarity is 𝑂 (𝑛), where 𝑛 is the number of parameters in the
gradient. Sort functions are known to be 𝑂 (𝐿 log𝐿), where the 𝐿
refers to the number of layers of the architecture. Unlike element-
wise sorting in previous works [3, 10, 38], sorting time is decreased
in magnitudes by using layers as the unit of comparison. In total,

the computational cost from similarity calculations and sorting are
negligible due to very low time complexities and do not stress any
more computational power of the clients than when compared to
general model training on private data in an FL system.

In addition to a minute addition of computational cost, FFL
lessens the communication cost by decreasing the total amount of
transmitted information. The server is responsible for sending the
model weights to the clients, which is an inevitable procedure in
terms of communication cost. For clients, the only component in
transmission are the fragmented gradients. Because the ratio of
gradient layer selection can be adjusted as a hyperparameter of the
framework, the extent of communication cost decrease will vary
by configuration.

FFL provides defense against reconstruction attacks with light
computational overhead and decreased communication cost by
only requiring additional storage of clients for saving the previous
model.

5 IMPLEMENTATION
5.1 Simulation of Federated Learning
Standard FL setting was adopted from Liang et al. [37]. To simulate
FL, several assumptions were made as follows [43]:

(1) Each client owns a non-overlapping private dataset com-
posed from 𝐶 classes.

(2) The server and all of the clients use the same architecture.
(3) A small fraction (𝛼) of total clients (𝑁 ) periodically sends

queries to the server to obtain global model parameters.
(4) Equal learning opportunities are given to all the clients. In

other words, each client should train a local model with the
same batch size (𝐵) and the same number of rounds (𝑇 ).

Training data of each class is split into shards of equal size. Each
client randomly chooses 𝐶 different classes and receives a non-
overlapping shard for each selected class to form a private dataset.
We evaluate our FL algorithm on various settings where 𝐶 is half
of the total number of classes of the respective dataset.

The target architectures are conventional architectures that use
convolutional layers and skip connection. We will refer to the first
architecture as ConvNet, which consists of 9 convolutional lay-
ers with batch normalization (BN) [26] and rectified linear unit
(ReLU) [48] activation and a single fully connected (FC) layer. The
second architecture is ResNet-18 [24], which is referred to as ResNet
in the evaluation for simplicity.

For the remaining assumptions, we use 𝛼 = 0.1, 𝐵 = 50, and
𝑁 = 100. The network is trained on 2,000 rounds for all experiments.
After receiving the fragmented gradient layers, layer-wise average
is conducted. The ratio of selected layers to the number of entire
layers is denoted by 𝑟 . We evaluate on different choices of 𝑟 (𝑟 =

0.2, 0.4, 0.6, 0.8, 1.0) where 𝑟 = 1.0 corresponds to standard FL.

5.2 Comparison Methods
As a defense method, FFL obscures the gradient to prevent recon-
struction attacks. Due to the lack of defense works specifically
targeting gradient reconstruction attacks, we compare FFL to other
methods that can be thought of as defense methods against recon-
struction attacks. Differential privacy is the benchmark for security
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applications, as it provides theoretical bounds and allows the mea-
surement and quantitative comparison of privacy. Although not
directed at reconstruction attacks, a differentially private model
provides mathematical guarantee of privacy protection against
a wide range of privacy attacks; conceptually the model should
defend gradient reconstruction attacks. Because the information
pruning aspect of FFL could be deemed as a defense technique, we
compare FFL to a gradient compression framework and attack the
compressed gradient. FFL is compared with the following:
• DP [23]: A differential private FL framework from Geyer et al. We
train three models by setting the total privacy budget threshold
as 𝜖 = 8 in accordance to [23], with different values of 𝛿 =

10−4, 10−5, 10−6, the probability of 𝜖-differential privacy being
broken. By keeping track of privacy leakage with the privacy
accountant of [1], training was stopped once 𝜖 was reached.
• DGC [38]: Lin et al. proposes a compression method that pro-
vides communication efficiency by leveraging sparse updates.
Only the highest values in the gradient are selected by com-
pression ratio 𝑟𝑐𝑜𝑚𝑝 . Although not a defense mechanism, the
concept of partial gradient selection is relevant and can be a good
comparison in showing the effectiveness of global gradient in
defense. We train three DGC models with compression ratio of
𝑟𝑐𝑜𝑚𝑝 = 0.05, 0.1, 0.2.
• FFL-random: The baseline comparison method of random selec-
tion of layers with ratio 𝑟 . FFL-random represents pure fragmen-
tation of the gradient devoid of the gradient layer selection of
the obscuring function 𝑓 .

5.3 Reconstruction Attack Settings
We evaluate our algorithms and baseline methods against recon-
struction attack proposed by Geiping et al. [22]. We attacked FFL
scenarios with [22] using the clients’ gradient portions of layer ratio
𝑟 . We optimize Equation 2 by replacing the gradient ∇\𝐿\𝑘 (𝑥,𝑦)
with the obscured version of the gradient 𝑓 (∇\𝐿\𝑘 (𝑥,𝑦)). The ob-
scuring methods of DP (gradient clipping and perturbation) and
DGC (gradient compression) also apply to this substitution. We
adopt the same hyperparameter settings of [22], where the opti-
mization runs for up to 24,000 iterations. Geiping et al. notes that
this maximum iteration of 24,000 is a conservative setting and that
privacy can be broken much earlier into optimization.

We use mean squared error (MSE) and peak signal-to-noise ratio
(PSNR) of the images as our evaluation metric of reconstruction
quality. A high MSE value denotes that the reconstructed image is
dissimilar to the original image, and therefore successfully achiev-
ing defense from reconstruction attacks. A low PSNR value implies
that the fidelity of the reconstructed image is corrupted by noise,
and therefore successfully defending reconstruction attacks.

5.4 Datasets
CIFAR-10/100 CIFAR-10 and CIFAR-100 [35] consists of 60,000
32x32 RGB images, each of which belongs to one of 10/100 different
object classes. We reconstructed 1,000 images for evaluation.
EMNIST Letters This dataset [12] consists of handwritten letter
28x28 pixel images. There are a total of 145,600 images dispersed
evenly among 26 classes representing every letter of the alphabet.
1,300 images were reconstructed for evaluation.

6 FFL AS A SOLUTION
We evaluate FFL on how well the observing function 𝑓 satisfies
the conditions of Problem 1, in the respective order of defense
capability, communication cost, and trade-off adjustment through
qualitative and quantitative analysis.

6.1 Defense Capability of FFL: condition (c1)
We first look at the qualitative characteristics of reconstructed sam-
ples. Figure 4 shows reconstructed sample images by each defense
method. A rather accurate reconstruction of the image is observed
when using the full gradient (no FFL). Specifically for FFL, as the
ratio of selected layers decreases, there is a larger degree of failure,
hence, more effective defense against reconstruction attacks. The
reconstructed images fail to be recognizable and display loss of
visual features and definition.

Reconstruction attacks are shown to be successful for 𝑟 ≥ 0.4
when trained with FFL-random, unlike the global gradient using
counterpart. This shows the unstable nature of random selection.
Unlike FFL, reconstructed images of DP and DGC methods show
preservation of image features, and can get a glimpse of the original
image. In this aspect, FFL differs in that reconstruction of the images
failed, whereas DP and DGC methods show noisy reconstructions.

Condition (c1) states that gradient obscuring by 𝑓 should in-
crease the defense capability. Effectiveness of FFL is shown in Fig-
ure 5 by comparison with other defense methods. The MSE and
PSNR of each training setting are shown as graphs depending on
the layer ratio 𝑟 .

At lower layer ratio 𝑟 , FFL exceeds the comparison methods in
terms of defense. A larger MSE and lower PSNR value indicates
higher protection against reconstruction attacks. In the case for
CIFAR-10/ConvNet and CIFAR-10/ResNet, at 𝑟 = 0.4 the MSE and
PSNR values show better defense capability than DP and DGC
methods of that setting (Figure 5 (a), (b)). For CIFAR-100/ResNet,
the turning point for reconstruction defense is when 𝑟 = 0.4, but
the defense efficacy is sharply escalated at 𝑟 = 0.2. At 𝑟 = 0.2, by
only paying an additional 0.6% in accuracy (Table 4), the average
MSE value nearly doubles while the PSNR value plunges. In the
final setting of EMNIST/ConvNet, 𝑟 = 0.2 is the unique setting of
FFL that outperforms all methods in MSE and PSNR values. For
this setting, the accuracy was preserved throughout all values of 𝑟 ;
𝑟 = 0.2 being the preferable setting that satisfies both accuracy and
data privacy.

Interestingly enough, differential privacy shows inconsistent de-
fense capability; the best performing trial is different for all settings.
This reflects the irrelevance of differential privacy to distinctive pri-
vacy. The defense capability that differential privacy shows is not
due to the privacy guarantee of the system, but due to the addition
of random noise, explaining this inconsistency.

6.2 Communication Cost: condition (c2)
Obscuring function 𝑓 employs layer selection, reducing the total
amount of bits in transmission. This can be seen in Table 2. The
following shows the average number of parameters for each round
of learning with 𝑟 . Because each layers in the architecture have
different numbers of parameters, 𝑟 does not necessarily equate to
the ratio of parameters. Nevertheless, a lower ratio implies less
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Figure 4: Reconstruction results for architecture ResNet on CIFAR-10. Each column pairs show the reconstructed results of the
sample images depending on the specified method. The original image and reconstructed image using the full gradient (no FFL)
are shown on the rightmost column. The respective MSE and PSNR values of each image are in Appendix A Table 6.
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Figure 5: Quantitative evaluation of FFL on various datasets and architectures. The x-axis is the layer ratio 𝑟 . DP methods are
shown as constant lines because they are invariant of layer ratio 𝑟 . For all settings, lower 𝑟 values of FFL demonstrate greater
defense capability than the comparison methods.

transmission bits, for example with 𝑟 = 0.6 in ResNet there is an
expected reduction to nearly 34% of the original parameters. 𝑓 satis-
fies condition (c2) of not increasing communication cost. Additional
computations are required to evaluate security scores of all the lay-
ers. Theoretically at degrees of 𝑂 (𝑛) for score calculation by layer
and 𝑂 (𝐿 log𝐿) for sorting by score value, we calculated the exact

time ratios between training a local model and the combination of
score calculation and sorting.

The computation times of a single round of FFL in each of the
settings described earlier is shown in Table 3. The similarity and
sorting operations of the obscuring algorithm of FFL only introduce
an average of an additional 4.86% time increase. Computing the



ACSAC ’22, December 5–9, 2022, Austin, TX, USA Seung Ho Na, Hyeong Gwon Hong, Junmo Kim, and Seungwon Shin

Table 2: Transmission bits in FFL. As the layer ratio decreases,
the number of parameters and therefore bits in transmission
decrease, lowering communication cost.

Architecture Layer Ratio # of Parameters Size

ConvNet

0.2 134K 533KB
0.4 563K 2.24MB
0.6 2.44M 9.72MB
0.8 3.48M 13.8MB
1.0 3.49M 13.9MB

ResNet

0.2 1.67M 6.69MB
0.4 3.08M 12.3MB
0.6 15.1M 60.5MB
0.8 25.9M 104MB
1.0 44.7M 179MB

Table 3: Computation time consumed in one round of
FFL for training and secure layer selection. For all
dataset/architecture pairs, layer selection introduces a mar-
ginal computation overhead compared to training.

Dataset/ FFL
Architecture Train (sec) Selection (sec)

CIFAR-10/ConvNet 0.94 0.03 (3.19%)
CIFAR-10/ResNet 1.27 0.09 (7.09%)
CIFAR-100/ResNet 1.34 0.10 (7.46%)
EMNIST/ConvNet 1.79 0.03 (1.68%)

security scores of each layer and selecting them according to 𝑟 can
be deemed negligible when compared to model training. Overall, 𝑓
satisfies condition (c2) of not increasing communication cost.

6.3 Learning Performance of FFL: condition (c3)
Condition (c3) states that trade-off adjustability should be available,
but this is under the premise that the FFL is feasible. Feasibility of
FFL is shown by tolerable model accuracy. Table 4 and 5 report the
accuracy of FFL on each dataset/architecture, along with the base-
line of 𝑟 = 1 and comparison models. For each training setting, the
expected phenomenon of decreasing performance by 𝑟 is observed.
Specifically, the maximum accuracy loss per setting when compared
to the baseline are 0.66, 11.34, 9.51, and 0.36 respectively. Accuracy
loss is different among datasets, and judging by the outcome of the
two models of CIFAR-10, also depend on what architecture is used
for the dataset. Considering that accuracy itself is highly dependent
on architecture, accuracy loss also being dependant is intuitive.

In the case of EMNIST/ConvNet, the accuracy stays almost con-
stant for all ratios 𝑟 . This constant performance of FFL depending on
𝑟 is comparable to all methods in that setting, and can be explained
by the relatively smaller complexity of the EMNIST dataset. As
can be denoted by the high accuracy of EMNIST, learning EMNIST
is a relatively easier task when compared with the other datasets,
resulting in 𝑟 = 0.2 to be sufficient for proper learning.

For most trials, FFL shows to be inferior in ratio-wise accuracy
when compared to FFL-random. This can be understood as the
cost of distinctive privacy, explained previously in Section 6.1. The
selected layers of FFL are determined in the aspect of data pri-
vacy, suggesting that more private layers are in fact more valuable
information when it comes to model learning.

Table 4: Accuracy on different dataset/architectures. The case
of 𝑟 = 1.0 for FFL implies the standard FedAvg [43] algorithm
without using fragmented gradients. DP methods involve no
fragmentation.

Dataset/
Architecture Methods

Accuracy (%)
Layer Selection Ratio r

0.2 0.4 0.6 0.8 1.0

CIFAR-10/
ConvNet

FFL 84.42 84.28 84.31 85.05 85.08FFL-random 83.35 84.02 84.2 84.67

CIFAR-10/
ResNet

FFL 78.19 80.77 86.45 89.75 89.53FFL-random 83.18 86.31 87.78 88.21

CIFAR-100/
ResNet

FFL 63.48 64.02 68.94 72.29 72.99FFL-random 67.3 69.77 71 71.89

EMNIST/
ConvNet

FFL 94.79 94.59 94.95 94.99 94.95FFL-random 94.73 94.91 94.94 95

Table 5: The accuracy of comparison methods on different
dataset/architectures with FFL at 𝑟 = 0.6

Dataset/
Architecture

Accuracy (%)
DP DGC FFL

10−4 10−5 10−6 0.05 0.1 0.2 𝑟 = 0.6

CIFAR-10/
ConvNet 76.44 79.62 80.16 84.13 85.3 86.07 84.31

CIFAR-10/
ResNet 88.59 89.53 89.96 87.35 88.21 89.3 86.45

CIFAR-100/
ResNet 69.09 74.39 72.14 68.17 69.96 69.87 68.94

EMNIST/
ConvNet 94.69 95.01 94.95 94.95 94.98 94.87 94.95

FFL satisfies the three conditions of Problem 1. Compared with
DP and DGC, it shows improved defense capability against recon-
struction attacks. By being lightweight, FFL is an affordable method
of providing distinctive privacy.

7 CONCLUSION
In this work, we conducted a holistic study of privacy attacks in
FL and found reconstruction attacks to be unique in the form of
privacy they breach. We name this privacy distinctive privacy and
find that we require a light solution that can enforce distinctive
privacy. Empirically, we show that FFL is a solution to this problem
by satisfying the three conditions of Problem 1. Our method is prac-
tical by introducing near-negligible computation overhead without
increasing communication cost when compared to legacy FL. We
compare the defensive capabilities to differential privacy and DGC
and show that FFL outperforms others in defense capability. We
hope that our decomposition of privacy in FL can be used in the
specialization of privacy-preserving methods.
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A APPENDIX
A.1 Additional Qualitative Results
Figures 6 and 7 show additional qualitative results of our evaluation.
In CIFAR-100, FFL with ResNet becomes effective since 𝑟 = 0.4, and
is the best defensive option in the case of EMNIST. In particular for
the previous case, however, DGC at 𝑟𝑐𝑜𝑚𝑝 = 0.05 seems to show
greatest defense capability with a smudging effect, whereas FFL
shows to be intense noise. For EMNIST, FFL shows to be the unique
defense method that properly negates reconstruction efforts. In
the architecture for ConvNet for CIFAR-10, FFL-random shows
unreliable results (𝑟 = 0.6 shows to be effective, while 𝑟 = 0.4
is not). FFL is effective starting from 𝑟 = 0.6, as can be seen by
high distortion of the reconstructed images while the other defense
options remain recognizable. Table 6 shows the specific MSE and
PSNR values of the images in Figure 4.

Dog Horse
Method Variant MSE PSNR MSE PSNR

FFL

𝑟 = 0.2 2.5215 -4.01 2.7064 -4.32
𝑟 = 0.4 1.1393 -0.57 2.5336 -4.04
𝑟 = 0.6 1.3935 -1.44 1.4402 -1.58
𝑟 = 0.8 0.0383 14.17 0.3009 5.22
𝑟 = 1.0 0.0038 24.2 0.0097 20.12

FFL-random

𝑟 = 0.2 0.0234 16.32 0.7158 1.45
𝑟 = 0.4 0.0019 27.14 0.0027 25.73
𝑟 = 0.6 0.0054 22.71 0.0037 24.37
𝑟 = 0.8 0.0185 17.32 0.0051 22.89
𝑟 = 1.0 0.0038 24.2 0.0038 24.2

DP
𝛿 = 10−4 1.2534 -0.98 0.0329 14.82
𝛿 = 10−5 0.5641 2.49 0.4814 3.18
𝛿 = 10−6 1.5161 -1.81 0.5078 2.94

DPC
𝑟𝑐𝑜𝑚𝑝 = 0.05 1.3035 -1.15 1.2741 -1.05
𝑟𝑐𝑜𝑚𝑝 = 0.1 1.0251 -0.11 0.6485 1.88
𝑟𝑐𝑜𝑚𝑝 = 0.2 0.2506 6.01 0.1511 8.21

Table 6: MSE and PSNR values of reconstructed images in
Figure 4.

A.2 Related Work
A.2.1 Server-Side Sample Reconstruction Attack and Defense. Mali-
cious servers can exploit gradient information from clients to infer
sensitive information of clients, for example, private samples of
clients can be reconstructed in server. Zhu et al. [72] is the first to
propose that input image can be reconstructed from gradient of its
loss function with respect to model weight. Specifically, randomly
initialized noisy images are optimized such that the model weight
gradients and the gradient from a given sample are in close proxim-
ity in L2 distance. Wang et al. [64] applied generative adversarial
network (GAN) in the gradient matching attacks with L2 distance
in the scenario of FL. The recent work by Geiping et al. [22] claims
that using cosine similarity as the gradient similarity metric pro-
vides higher quality of reconstructed samples than when using
L2 distance, suggesting the cosine similarity reconstruction as the
more sophisticated form of attack. To the best of our knowledge, we
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Figure 6: Reconstruction results on datasets CIFAR-100 and EMNIST. Each column pairs show the reconstructed results of the
sample images depending on the specified method. The original image and reconstructed image using the full gradient (no FFL)
are shown on the rightmost column.

are the first to propose a practical defense mechanism against these
sample reconstruction attacks, including the attack using cosine
similarity.

A.2.2 Differential Privacy. As described in Section 2.3, differential
privacy is a theoretical approach to quantifying information leakage.

At first, differential privacy was used in legacy (non-distributed)
machine learning settings, where they proposed a stochastic gradi-
ent descent method with a moments accountant to permit tighter
privacy bounds [1]. In effect, the purpose of this work was to pro-
tect a single data point’s contribution. A form of differential privacy
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Figure 7: Reconstruction results for architectures ConvNet on CIFAR-10. Each column pairs show the reconstructed results of
the sample images depending on the specified method. The original image and reconstructed image using the full gradient (no
FFL) are shown on the rightmost column.

usage in a distributed setting incorporated the Gaussian mechanism
to empirically show “client level” differential privacy [23], where
they aimed to protect not a single data point’s contribution, but the
whole client’s contribution.

Other works diverged from the privacy aspect and applied dif-
ferential privacy to other tasks. Agarwal et al. studies the binomial
mechanism and its use in conjunction with stochastic k-level quan-
tization for the purpose of communication efficiency [2], and Hu
et al. applies differential privacy to multitask learning in federated
settings by using the Gaussian mechanism.

Due to the strict conditions of (𝜖, 𝛿) differential privacy, other
works focus on ways to relax differential privacy to match their
specific task. Bayesian differential privacy was proposed to relax
differential privacy to obtain tighter privacy guarantees [60], and
Rényi differential privacy was proposed as a natural relaxation
of differential privacy based on the Rényi divergence that better
suited composition of heterogeneous mechanisms [45]. Despite
the multitude of differential privacy works, we are the first to test
differential privacy against reconstruction attacks, and to propose
that its ineffectiveness is due to it being a form of disclosure privacy.

A.2.3 Local Differential Privacy. The main problem of differen-
tial privacy was that it lacked a client-owned defense mechanism
(Section 3.1). In contrast to differential privacy, local differential
privacy (LDP) [15, 29] is a field where each client applies more
restrictions (e.g., noise) specific to their original data (and thus
achieving privacy from the server).

RAPPOR [18], the first large-scale deployment of local differ-
ential privacy, uses a memoization technique that hinders privacy
attacks but allows an inevitable utility loss. Zhao et al. [71] pro-
poses a local differential privacy algorithm specific for an Internet
of Vehicles setting, and Seif et al. [55] studies FL in a Gaussian
multiple access channel with LDP constraints. The above studies

were tested on non-deep learning architectures, and therefore not
applicable for our problem domain.

Some studies incorporated deep learning architectures [4, 62] but
were limited to very shallow networks (e.g. two convolution layers).
More recently, FL-CS-DP [31] proposed an LDP scheme in FL that
employed compressive sensing [7, 14] to reduce communication
costs, but tested on a simple architecture of a fully connected neural
network with two hidden layers. Unfortunately, more complex
architectures are the norm for real world applications. To reflect
on this matter, FFL deals with architectures of much more depth
and complexity that are inaccessible by LDP.
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