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ABSTRACT
Data drift is the phenomenon when the input data distribution in
testing time is different from the training time. This strengthens
the generalization gap in a model, which is known to severely
deteriorate the model’s performance. Meanwhile, previous studies
state that membership inference attacks (MIA) take advantage of the
generalization gap of a machine learning model. By transitive logic,
we can deduce that data drift would affect these privacy attacks. In
this work, we consider data drift when applied to the privacy threat
of MIA. As the first work to explore the detrimental extent of data
drift on membership privacy, we conduct a literature review on
current MIA defense works under selected dimensions associated
with data drift. Our study reveals that not only has data drift never
been tested in MIA defense, but there is also no infrastructure
to juxtapose data drift with MIA defense. We overcome this by
proposing a design for simulating authentic and synthetic data
drift and evaluate the benchmark MIA defense methods on various
settings. The evaluation shows that data drift strongly enhances the
attack success rate of MIA, regardless of defense. In this, we propose
MIAdapt, a proof of concept of a MIA defense that allows update
in data drift. From this evaluation, we provide security insight into
possible solutions in negating the effects of data drift. We hope our
work brings attention to the threat of data drift and instigates the
development of MIA defense that are adaptable to data drift.

CCS CONCEPTS
• Security and privacy→ Privacy protections; • Computing
methodologies→Machine learning.
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1 INTRODUCTION
Times change the behavior of humans and their data, i.e., the in-
put data distribution. This phenomenon called data drift is when
data distribution during the training phase is different from testing
phase [2, 35]. A real world example of data drift is the immense
effect COVID-19 has had on human behavior [33]. This shift in
data distribution leads to significant performance degradation in
machine learning models [9]. An example is Instacart’s online gro-
cery recommendation model [7], where the accuracy dropped from
93% to 61% since COVID-19. This common problem of data drift
is caused by the “closed-world” assumption of machine learning
that assumes the training and testing data distribution are similar.
This assumption is too strong in the real world, inducing notable
generalization gap in the machine learning model.

In the field of membership inference attacks, generalization gap
is known to be one of the leading causes of a deep learning model’s
vulnerability to membership inference [3, 26, 50, 60]. Membership
inference attacks (MIA) are a type of privacy attack on deep learning
models that extract the information of whether a data piece was
used in training [48]. The inference of membership information
is severe threat to privacy because they allow the deduction of
personal information based on the model; membership information
of a data point in a machine learning model for drug dose prediction
leaks information of the data owner’s state of health. Noting that
data drift can cause generalization gap, by transitive logic, we can
deduce that data drift may aid in the performance of MIA. Because
data drift is a common and inevitable observation that occurs in
the wild, this would escalate the potential threat of MIA.

Meanwhile, MIA defense methods have been studied throughout
past literature. The MIA defenses can be categorized by the time
they are applied. The defense methods that are applied during
training aim for the improved generalization of the model [20, 27,
27, 38, 45, 48, 50]. The idea is that a well generalized model will
adapt properly to unseen data; it will have similar performance and
behavior on training and testing data, and without any difference
in model behavior, MIA can be prevented. MIA defenses that occur
after training converge to the concept of training an unprotected
model first and then concealing the original prediction vector of this
model from the attacker. These methods include logit masking [5,
21, 28, 45, 48] where the logits are altered following a certain rule
or optimization algorithm, or they use the trained unprotected
model as a reference to smooth out vulnerable features and rebuild
a protected model [16, 46, 56].

Data drift may promote MIA, but only after studying its effect on
MIA defense methods can we recognize data drift as an established
threat to membership privacy. Unfortunately, there is no literature
that has addressed this issue of data drift in MIA settings. All the
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datasets used in evaluation are randomized datasets that are divided
into training and test datasets by random selection from a single
pool of data; the training and test datasets are from the same data
distribution and display no aspect of data drift. Not only has data
drift never been studied with MIA defense, but there is also no plane
in which the two can be juxtaposed; there are no suitable datasets to
perform evaluation. The datasets used in data drift work primarily
consist of stream data [30] and thus are incompatible with the
privacy-centric tasks and data formats ofMIA settings. This obstacle
bears another issue of there being no general method to transform
a randomized dataset into a drifted dataset. To properly address
data drift in MIA defense, an acceptable MIA-friendly dataset with
data drift must be obtained, and to obtain a drifted dataset, a means
of implementing data drift in a controllable form must be acquired.

In this work, we acknowledge the potential threat of MIA en-
hanced by data drift, and confirm the effects of data drift on MIA
defense. The first part of this work systematically reviews MIA
defense on three critical dimensions that concern data drift. These
dimensions are generalizability—can the method reduce the effect
of data drift, adaptability—can the method be updated to new dis-
tributions, and nonrandomization—did the method test in data drift
conditions. From this analysis of MIA defense literature, we learn
that none of the previous MIA defense literature considered data drift.
The second part of this work organizes a detailed evaluation of
MIA defenses when exposed to data drift. We provide a data drift
design that generates authentic and synthetic data drift when given
a randomized dataset to satisfy the lack of infrastructure for data
drift in MIA settings. Our evaluation shows that when the degree
of data drift is increased, the attack success rate of MIA increases in
all benchmark MIA defense methods, independent to MIA defense.
This shows that data drift is capable of penetrating MIA defense
methods, and therefore reduces the load of an attacker; all the at-
tacker needs to do is prepare a drifted dataset. Data drift poses as
a severe threat of membership privacy in deep learning models.
To this end, we offer a MIAdapt, a proof of concept solution that
allows updating MIA defense to adapt to data drift. Compared to
the benchmark MIA defense methods, MIAdapt best improves the
membership privacy of an AI model.

This paper has the following contributions:
• We are the first to question the effect of data drift in MIA, and
our analysis alerts the presence of data drift being a potent
threat to membership privacy in deep learning models.

• We thoroughly study the past MIA defense literature scru-
tinized by data-drift-related dimensions, and offer findings
contributing to the implementation of data drift.

• We provide a method for generating drifted datasets from
randomized datasets and introduce controllable parameters
representing the degree of data drift in both authentic and
synthetic data drift generation.

• Our evaluations show that data drift penetrate all bench-
markMIA defenses in extensive evaluations of various attack
methods and datasets. Accordingly, a defense strategy called
MIAdapt is crafted to mitigate data drift vulnerabilities.

Our code of data drift generation and evaluation is released here1
to support future research and reproducibility.

1https://doi.org/10.5281/zenodo.6778830

2 BACKGROUND AND RELATEDWORK
2.1 Membership Inference Attack
Membership inference attacks (MIA) are a type of privacy attack
that takes advantage of the fact that machine learning models are
prone tomemorizing the training data information [44]. Specifically,
MIA intend on inferring the participation of a data point in the
training of a machine learning model [48]. MIA can be formally
described as given a target data sample 𝑥 , target model M trained
on D𝑡𝑟𝑎𝑖𝑛 , and auxiliary dataset D𝑎𝑢𝑥 :

𝑀𝐼𝐴(𝑥,M,D𝑎𝑢𝑥 ) =
{
1 when 𝑥 ∈ D𝑡𝑟𝑎𝑖𝑛

0 when 𝑥 ∉ D𝑡𝑟𝑎𝑖𝑛

(1)

Despite the requirement of both 𝑥 andM in Equation 1, MIA can
be carried out in black-box settings as well, in which the attacker
uses the model’s output prediction vectorM(𝑥) andD𝑎𝑢𝑥 to carry
out MIA.

Depending on the construction of the attack model, MIA can
be classified into two major approaches of using binary classifier
optimization or metric-based thresholding. The main idea of binary
classifier optimization methods is to train a neural-network based
binary classifier that performs membership inference [48]. These
works first train a shadow classifier model that mimics the behavior
of the target model on a shadow dataset that is constructed to be
from the same distribution as the original train data. By querying
data points to this shadow model, the posteriors can be labelled by
their respective membership status, and this dataset can be used
to train an attack model that successfully infers membership in
black-box settings [45]. Variations in training algorithm include
utilization of class labels for input features [38] and incorporation
of latent features as well as the posteriors for membership inference
in the case of white-box settings [39].

Metric-based thresholding methods make membership infer-
ences based on the calculated metric of the prediction vector. By
preparing a shadow dataset, these methods query the target model
for the prediction vectors of the train and test data points. From
these prediction vectors, performance metrics are calculated, where
the performance metric 𝑓𝑚𝑒𝑡𝑟𝑖𝑐 : 𝑅𝑛 → 𝑅 is a scalar function that
maps a logit vector to a rational value. The optimal threshold value
that best differentiates train and test data points can be determined
for the shadow dataset, which in turn is used for MIA on the target
dataset [26, 51]. Compared to the methods using binary classifier
optimization, metric-based thresholding methods do not require
the relatively computation-heavy and time-costly procedure of opti-
mization, and is therefore a lighter means of MIA [18]. Meanwhile,
Song et. al. [50] claims that binary classifier optimization meth-
ods are insufficient in proper assessment of membership inference
risk and that metric-based thresholding methods show improved
MIA performance. Therefore, we select four metric-based thresh-
olding methods for our target attacks in evaluation, described in
Section 4.2.
Why are MIA feasible? The essence of MIA originates from a
model’s capability to memorize train data. Many papers have for-
mally and empirically discussed overfitting in classifier training to
be a factor contributing to successful MIA [3, 26, 50, 60]. Deep
learning models are composed of many parameters that often-
times provide excessive model complexity for the prepared train
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dataset size [54]. Overfitting in a model is the state of the model that
learns the manifold specific to the train dataset and deteriorates
the model’s generalization; the model will show a generalization
gap, which is the contrasting performance in the train and test
dataset. Tightly associated with overfitting, generalization gap and
its correlation to MIA performance has also been studied [45, 51].
In the end, MIA takes advantage of a model when it shows different
behaviors in train and test data.

2.2 Data Drift
Data drift, also called dataset shift, is the concept of a mismatch be-
tween training and test data distributions, i.e., a situation in which a
model’s input distribution changes in testing time [2, 35]. The com-
mon assumption of machine learning is a closed-world assumption,
where the train data and test data are from the same distribution.
But in real-world applications and scenarios, this foundation of ma-
chine learning is often violated [31]. Data drift is the observation
of this inconsistency and can be formally defined as such:

Definition 1 (Data Drift). For data point 𝑥 ∈ X and its class label
𝑦 ∈ Y, data drift is the condition when 𝑃𝑡𝑟 (𝑥,𝑦) ≠ 𝑃𝑡𝑠𝑡 (𝑥,𝑦).
𝑃𝑡𝑟 refers to the data distribution at the training time, while 𝑃𝑡𝑠𝑡

refers to the data distribution at the testing time (i.e. time of model
deployment). Data drift is defined in terms of joint distributions
and leaves it as a general concept, allowing freedom and flexibility
in what can be referred to as data drift. From this definition, data
drift can be classified into two broad categories of covariate shift
and concept drift [31, 35].

Definition 2 (Covariate Shift [24, 47, 58]). Given a data point
𝑥 ∈ X that causally determines its class label 𝑦 ∈ Y, covariate shift
is the case where 𝑃𝑡𝑟 (𝑦 |𝑥) = 𝑃𝑡𝑠𝑡 (𝑦 |𝑥) and 𝑃𝑡𝑟 (𝑥) ≠ 𝑃𝑡𝑠𝑡 (𝑥).
Definition 3 (Concept Drift [12, 57, 58]). Given a data point 𝑥 ∈ X
that causally determines its class label 𝑦 ∈ Y, concept drift is the
case where 𝑃𝑡𝑟 (𝑦 |𝑥) ≠ 𝑃𝑡𝑠𝑡 (𝑦 |𝑥) and 𝑃𝑡𝑟 (𝑥) = 𝑃𝑡𝑠𝑡 (𝑥).

Covariate shift denotes the case where the data distribution
(distribution at train 𝑃𝑡𝑟 and test 𝑃𝑡𝑠𝑡 ) changes over time, but their
assigned labels remain the same. An example of covariate shift is
the changing appearance of trees by season. A tree in springtime
will have green leaves while a tree in wintertime will have none; but
nonetheless, both are trees. Concept drift refers to the case where
a data piece’s label changes over time. An example of concept drift
might be a specific indicator of a binary file being malicious in the
past, but now considered benign.

Data drift is recognized as a major problem hindering modern
day machine learning applications. In data drift, the deviated input
distribution will no longer abide to the trained decision boundary,
causing performance degradation issues [9]. As critical as it is, data
drift and its effect is a commonly occurring phenomenon in the real-
world. According to the Organisation for Economic Co-operation
and Development (OECD), machine learning models predicting
global air passenger volumes failed to properly perform in the
COVID-19 era [42]. Concept drift in the security venue was also an
issue affecting tasks such as malware classification [1, 4, 29] and
intrusion detection [32].
Relevance to MIA: Note that data drift caused this erroneous be-
havior in well-trained models. Due to the test data distribution (e.g.,

Data Drift

Train/Test Distribution Difference

Generalization Gap

Membership Inference Attack

Figure 1: How data drift affects membership inference at-
tacks. Data drift scenarios will lead to a generalization gap in
themodel, making it prone tomembership inference attacks.

post-COVID-19) being distant from the train data distribution (e.g.,
pre-COVID-19), a large generalization gap was revealed, depicted
in this faulty behavior. Because generalization gap describes the dif-
ferent interpretation of the data by a model in train and testing time,
it can be described formally by 𝑃𝑡𝑟 (M(𝑥), 𝑦)) ≠ 𝑃𝑡𝑠𝑡 (M(𝑥), 𝑦)).
Overfitting and generalization gap was studied to be the main cause
of MIA so it can be suggested that data drift conditions could lead to
a greater vulnerability against MIA.

The relevance of data drift andMIA is portrayed in Figure 1. Note
that the second arrow between “Train/Test Distribution Difference”
and “GeneralizationGap” is based on an empirical observation of the
symptoms of data drift on the machine learning models mentioned
above. In this work, we intend on examining this relation between
data drift and membership inference and understand the efficacy
of MIA defense methods in data drift conditions by covariate shift.

3 DATA DRIFT IN MEMBERSHIP INFERENCE
DEFENSE

Due to the fact that data drift may increase the dangers of MIA,
it is essential to consider them in the presence of MIA defense
methods; if the effect of data drift is potent enough to penetrate MIA
prevention schemes, data drift can be deemed a critical vulnerability
threatening the private membership information of models. To
understand the effect of data drift inMIA defense, we breakdown the
past MIA defense literature by three dimensions in consideration
of data drift: generalizability, adaptability, and nonrandomization.
Each of these dimensions answers the questions of:

(1) Generalizability: Does the defense have means to reduce the
effect of data drift?

(2) Adaptability: Can the defense be updated for data drift?
(3) Nonrandomization: Does the evaluation contain any drifted

datasets?

3.1 Dimensions in Scrutiny
3.1.1 Generalizability of defense models. A well-generalized
model is a model that delivers the same performance in the test
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dataset as the train dataset, even when minimizing the training
error [40]. Evidently, the generalization gap would be minimal. An
ideally generalized model would maintain a low generalization gap
(𝑃𝑡𝑟 (M(𝑥), 𝑦) ∼ 𝑃𝑡𝑠𝑡 (M(𝑥), 𝑦)) when the data drifts at a small
degree. In this sense, generalization of the model helps dilute the
effect of data drift in the model.

Many MIA defense methods provide generalization to their mod-
els by using regularizations. Regularizations are the additory meth-
ods that make solutions simpler to avoid overfitting, which are typ-
ically penalty/complexity terms that are added in the optimization
process to prevent overfitting and improve generalization [34, 55].
Classic regularizations, although not meant for MIA defense, were
shown to be effective in previous works [20, 27, 45, 48, 50]. These
regularizations include L2-norm [41], dropout [52], model stack-
ing [45], early stopping [43, 50], and label smoothing [36].

On the other hand, MIA-specific regularization methods were
also developed, with the main purpose of preventing MIA. Adver-
sarial regularization [38] combined the original training loss with
the membership inference gain of a dummy attack model. Similar
to the training of GAN architecture [10], the target model and the
dummy attack model are trained simultaneously in turns. This al-
lows the target model to be regularized by training in the direction
of misclassification of the attack model. MMD+Mixup [27] adds the
Maximum Mean Discrepancy (MMD) between train and non-train
data as a regularization term. The MMD is a kernel based statistical
test that measures the distance between two distributions [11].

By retaining regularization in the MIA defense, the target model
can be expected to be less affected by data drift. In this aspect, we
look into the regularization whereabouts and choice of regulariza-
tion technique.

3.1.2 Adaptability of defense models. Data drift is a temporal
phenomenon which allows reactive measures. Accordingly, a popu-
lar approach in overcoming data drift involves the update of models
in real-time so that the model is trained continuously on the current
data, called online learning [17]. However, online learning is appli-
cable only on stream data, which is not the environment used for
MIA evaluation nor is the task of membership inference relevant
to stream data. Unless a model is retrained from scratch, data drift
will affect the model and the model will be vulnerable to MIA for
the time being. Because retraining a model is expensive in many
aspects, frequent retraining of a model is difficult.

MIA defense, however, does not have to occur simultaneously
with model training and can be applied after model training. Only
when a defense is applied post-model-training can there be a way
to address the condition of data drift into the defense; when the
defense is applied during the training of the model, data drift cannot
be reflected into the defense. Therefore, the time in which defense
is applied with respect to model training is a feature of interest.

The information source thatMIA take advantage of are themodel
weights [37], so defenses strive to obscure the information that can
be extracted from the model weights. Defenses that are applied after
training can be in the form of logit masking [5, 21, 28, 45, 48] to
mitigate black-box attacks. The main idea of logit masking is to hide
the full posterior probabilities of a modelM(𝑥) from the attacker.
Versions of logit masking include dropping all information except
the top-k confidence scores [48] and only returning the label of the

prediction [5]. MemGuard [21] takes a different approach and opti-
mizes noise 𝑛 specific to each data point to maintain the prediction
of the target model but be undetected by a neural-net-based attack
model. Hanzlik et al. [13] deploys ML models to Isolated Execution
Environments and applies noise calculated from the normalized
entropy of the logit vector.

In addition to logit masking, other methods of MIA defense that
are applied post-training are weight pruning [56] and knowledge
transfer [46]. Both methods base their MIA protection by first train-
ing an unprotected model. Wang et al. [56] optimizes on objectives
representing privacy and efficiency to find a subnetwork from the
previously trained target classifier. Shejwalkar et al. [46] uses the
unprotected model to filter reference data showing minimal privacy
leakage, and leverages knowledge distillation [16] and the reference
data to train a protected model.

By having the defense applied post-training, it allows the defense
method to consider the aspects of data drift in MIA defense.

3.1.3 Nonrandomization of datasets. Themain feature of datasets
that are looked into are how the datasets were constructed and di-
vided into training and testing datasets. If the train dataset and test
dataset were distinguished by a certain rule or pattern (e.g., different
time periods), we can consider the train and test datasets to belong
to different distributions and therefore contain data drift. On the
other hand, when datasets are divided by random selection from a
single set into train and test, these datasets can be considered to
be from the same distribution when the sample size is large by the
central limit theorem. Randomization in dataset construction will
not contain data drift in the resulting test dataset; nonrandomized
datasets can be expected to contain data drift.

EveryMIA defensewill eventually be evaluated on staple datasets
used in previous MIA works. If the defense methods were evaluated
on datasets with aspects of data drift, the results will demonstrate
the defense’s robustness to data drift. The two main tasks of models
attacked by MIA are classification of image and tabular data. From
the open-source image and tabular datasets used, most come ei-
ther prepared into train/test datasets beforehand, or come in single
datasets where the security practitioner decides the division into
train/test regardless of data type.

Some examples of datasets used in MIA presented in train/test
versions are CIFAR-10 [25], CIFAR-100 [25], and Purchases2. CIFAR-
10 and CIFAR-100 are composed of images of objects and organisms
belonging to 10 and 100 classes, respectively. These datasets were
divided into training and testing datasets by first collecting images
from internet search engines. From this massive collection, the
testing dataset was constructed by randomly selecting 1,000/100
images per class. Therefore, the train and test are from the same
distribution. Purchases, on the other hand, is a dataset used in a
kaggle competition of customer and purchase information. The
train and test datasets are collected during different time periods:
setting 2013/05/01 as the dividing time, data collected before this
time is train data and after is test data. In practice, the provided test
dataset cannot be used because it carries empty information (the
competition was to predict this missing information using the train
dataset), so security practitioners use random sampling from the
train dataset [38, 48, 50].
2https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
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Table 1: Examination ofmembership inference defense literature for data drift aspects in chronological order. Notice all datasets
are randomized datasets (shaded red in table) that display no data drift, so none of the defense works display nonrandomization.
Works from [21, 23, 38, 45] are the standard comparisons in MIA defense (shaded green in table).

Work Comp. Regularization Generalizability Time of Adaptability Datasets NonrandomizationNumber Defense

[48] 1 L2-Regularization ✓
After Training
(Top-𝑘 , Softmax) ✓

CIFAR-10, CIFAR-100,
MNIST, Purchases,
Location, Texas100,
UCI Adult

[38] 6
Dropout,
L2-regularization,
Adversarial regularization

✓ With Training CIFAR-100, Purchases,
Texas100

[61] 1 Data Obfuscation ✓ With Training CIFAR-10

[45] 7 Dropout,
Model-Stacking ✓ With Training

CIFAR-10, CIFAR-100,
MNIST, Face,
Location, Purchases,
Adult, News

[21] 5 - After Training
(MemGuard) ✓

CH-MNIST, Location,
Texas100

[59] - -
After Training
(Logit Perturba-
tion)

✓
CIFAR-10, Purchases,
Face

[56] - - After Training
(Weight Pruning) ✓

CIFAR-10, CIFAR-100,
MNIST, ImageNet

[50] 4 Early Stopping ✓ With Training CIFAR-100, Purchases,
Location, Texas100

[46] 1 -
After Training
(Knowledge
Transfer)

✓
CIFAR-10, CIFAR-100,
Purchases, Texas100

[27] - MMD+Mix-up ✓ With Training
CIFAR-10, CIFAR-100,
MNIST, Purchases,
Texas100

[13] - -
After Training
(Entropy-based
Noise)

✓
CIFAR-100, MNIST,
GTSRB

[22] - Data Augmentation ✓ With Training CIFAR-10, CIFAR-100,
MNIST, Fashion-MNIST

[53] - Ensembling ✓
After Training
(Knowledge
Transfer)

✓
CIFAR-100, Purchases,
Texas100

Examples of datasets used in MIA settings that require manual
division into train and test datasets are Location3 and Texas1004.
Location is a tabular dataset of mobile users’ location “check-in”
information in the Foursquare social network, and Texas100 is
a dataset based on archived hospital discharge data of 10 years
released by the Texas Department of State Health Services. For
both Location and Texas100, a version preprocessed into train and
test datasets by random selection from Shokri et al. [48] was used

3https://sites.google.com/site/yangdingqi/home/foursquare-dataset
4https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm

in most works [21, 38, 45, 50]. These datasets were randomized by
researchers and display no data drift.

By checking the randomization of evaluation datasets in MIA
defense work, we can know if MIA defense has been tested on data
drift and therefore the stand of MIA defense against data drift.

3.2 Examining Defense Literature
We investigated the MIA defense literature on the previously men-
tioned dimensions of data drift, summarized in Table 1. For each
work, we report the regularization method, time of defense, and
the datasets used in evaluation. Depending on each element, we
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check the generalizability, adaptability, and nonrandomization, re-
spectively. In addition, we count how many times the work was
used as a comparison in the evaluation of other works (the scope
being the works listed on the table). The works are listed in time
ascending order, with Shokri et al. [48] being the pioneer work of
MIA. From this summary, we identify four findings of MIA defense.
-Nonrandomization is not satisfied in any MIA defense work
evaluation. This is denoted by the red shading of the nonrandom-
ization column of Table 1. All datasets that were used in defense
evaluation were randomized datasets. This means that the defense
performance reported in each work is unknown in data drift condi-
tions. Furthermore, this reflects the lack of attention to MIA in data
drift conditions. In this work, we intend to adjust this negligence
and alert the dangers of data drift in MIA by testing standard MIA
defenses in drifted datasets.
-The dataset pool used in evaluation of MIA defense is lim-
ited. Adding on to the first speculation, the range of datasets to
choose from is not wide. MIA defense literature mainly base their
evaluations on the datasets used by Shokri et al. [48]. As a fair and
effective means of comparing with previous work this is natural,
but it hinders testing in different environments, e.g. data drift. In
this work, we include evaluations on a different dataset that can be
easily tailored for data drift.
-Generalizability and Adaptability are generally not observed
simultaneously. Excluding the first and last entry of Table 1, each
defense method relies on either defense with training or defense
after training. However, there is no reason for choosing only one
of generalizability or adaptability because they are completely or-
thogonal characteristics of MIA defense; a regularization can be
applied in training, and a logit masking can be applied on this
trained model afterwards. For this reason, in our work, we set early
stopping [50], a regularization method, as a default when training
due to its freedom in application with other defense methods (with
or after training).
-The benchmarks in MIA defense are adversarial regulariza-
tion [38], model-stacking [45], MemGuard [21], and early
stopping [50]. The comparison numbers of Table 1 show that the
above defense methods were compared to most among the litera-
ture, shaded in green. Compared to the citation count of a work,
counting the number of times a defense method has been directly
compared to better depicts the usage of a defense work. There-
fore, we follow the past literature and use the methods that have
appeared most in other defense works as the benchmark when
evaluating in data drift conditions. Note that this work intends on
studying the effect of data drift onMIA defense in general, therefore
the benchmark methods are the best candidates to test this.

4 APPLYING DATA DRIFT
4.1 Designing Data Drift
The category of data drift that is considered in this work is covari-
ate shift. As the first work of incorporating data drift with MIA,
we encountered three challenges. We address these challenges by
designing authentic and synthetic drift using controllable variables.

4.1.1 Scarcity of Datasets with Data Drift. The first challenge in
testing MIA defenses on data drift is the lack of dataset due to

Table 2: Make-up of data drift in UTKFace. The superscript
denotes the condition in which the dataset is being divided
and the subscript denotes the task.

Task Dataset Type Condition Size

Race Classification 𝑈𝑇𝐾
𝑎𝑔𝑒
𝑟𝑐

Train 𝑎𝑔𝑒 > 20 18,828
Test 𝑎𝑔𝑒 ≤ 20 4,880

Age Classification 𝑈𝑇𝐾𝑟𝑎𝑐𝑒
𝑎𝑐

Train 𝑟𝑎𝑐𝑒 ∈ {0, 2, 3, 4} 19,179
Test 𝑟𝑎𝑐𝑒 = 1 4,529

the uncommon and unique setting of data drift. As mentioned in
Section 2.2, the common assumption of machine learning tasks is a
closed world assumption of train and test data being from the same
distribution. And as verified by the literature study on MIA defense,
all datasets used in previous literature are randomized datasets.
Preparing self-collected datasets would be a solution in acquiring a
drifted dataset (e.g., purposely collecting test data at a later time),
but this option is obligated to the burden of data collection; data
collection is a rigorous operation that involves both labor and time.
Furthermore, even if the dataset is to be prepared, it needs to abide
by the characteristics of datasets used in previous MIA literature
(e.g., machine learning task, data type) and be reproducible (unless
the dataset is open, it is highly unlikely due to time difference) to
be meaningful for our purpose. Therefore, preparing and obtaining
drifted datasets that meet the underlying requirements is a difficult
task.

Lu et al. [30] conducted a review on data drift and reported the
datasets used among studies handling data drift. Unfortunately,
the listed datasets have no intersection with datasets used in MIA
works; the listed datasets are specific to stream data, which is not
consistent with MIA works. Due to this reason, we choose to manip-
ulate multilabel datasets. By dividing the dataset with a condition
on one label and training a target model with a classification task
of a different label, data drift can be performed without additional
processing of the data. Because we have separated a group of data
abiding to a specific condition as the test dataset, the condition of
data drift is established (𝑃 (𝑥,𝑦2 |𝑦1) ≠ 𝑃 (𝑥,𝑦2 |𝑦′1)). An advantage of
this data drift design is that it allows the construction of authentic
data drift. Although not used in evaluation, notice how this con-
struction can be applied to tabular data as well. By being composed
of real data, this way of employing data drift can be considered
similar to real data drift.

The multilabel dataset that we use in our work is UTKFace5, a
multilabel dataset of human face images. UTKFace is a large-scale
dataset with more than 20,000 images annotated with age, gender,
and ethnicity information and can be used for multiple machine
learning tasks. We divide the age tag into five age group labels
(bracket of 20 years) for the task of age classification, and use the
race tag as labels for race classification. Table 2 shows howUTKFace
was organized into two data drifted datasets,𝑈𝑇𝐾𝑎𝑔𝑒𝑟𝑐 and𝑈𝑇𝐾𝑟𝑎𝑐𝑒𝑎𝑐 .
The superscript denotes the condition in which the dataset is being
divided and the subscript denotes the task. The superscript 𝑓 𝑢𝑙𝑙
refers to random division (no data drift). For age classification (𝑎𝑐),
the dataset is divided depending on the race information, and for
5https://susanqq.github.io/UTKFace/
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race classification (𝑟𝑐), the dataset is divided depending on the age
information. This properly portrays covariate shift because the only
aspect of the data we have manipulated is the input distribution
(there are no changes in label information).

4.1.2 Lack of Standardized Design of Synthetic Data Drift. The data
drift design of Section 4.1.1 only applies to multilabel data, which
means that this is inapplicable to any datasets in Table 1. Nonethe-
less, for a fair and proper analysis of data drift on MIA defense,
we must utilize these single label datasets. Therefore, we must be
able to apply data drift to single label datasets. Unlike multilabel
data, there is only one attribute (label information) pertaining to
the data. By dividing the dataset based on this attribute, the label
information of the data would be forfeited and the machine learning
task cannot be conducted.

Because an authentic form of data drift is not possible for these
datasets, data drift was simulated in a synthetic manner. We applied
synthetic data drift in a form of a normalization filter. Normalization
is a widely used step in data-preprocessing in machine learning [19].
In the case of image data, each pixel value is normalized by the
mean 𝜇 and standard deviation 𝜎 .

𝑥 =
𝑥 − 𝜇
𝜎

(2)

For staple datasets such as CIFAR-10 and CIFAR-100, the mean
and standard deviation are well-known and used in normalization.
For tabular data, the mean and standard deviation was calculated
for each attribute, and the normalization filter was applied to the
attribute values. By controlling the mean and standard deviation
that a data sample is normalized to, covariate shift is simulated. We
drift the data on both mean and standard deviation, to confirm the
effect of data drift in familiar single label datasets.
Base Datasets. In this work, we prepare six datasets along with
their drifted counterparts. The datasets are UTKFace (𝑈𝑇𝐾 𝑓 𝑢𝑙𝑙𝑟𝑐 for
the full UTKFace dataset with race labels, 𝑈𝑇𝐾 𝑓 𝑢𝑙𝑙𝑎𝑐 for the full
UTKFace dataset with age labels), CIFAR-10, CIFAR-100, MNIST6,
and ADULT7. From UTKFace, authentic data drift is generated into
datasets𝑈𝑇𝐾𝑎𝑔𝑒𝑟𝑐 and𝑈𝑇𝐾𝑟𝑎𝑐𝑒𝑎𝑐 . The drifted counterparts (synthetic)
of datasets in CIFAR-10, CIFAR-100, MNIST, ADULT are shown
with the superscript 𝑑 . Note that data drift is generated only in the
test dataset.

4.1.3 Controlling Data Drift. By controlling the degree of data
drift, a more fine-grained analysis of its effect on MIA defense
can be achieved. For the case of authentic data drift, there is no
variable that directly controls the degree of data drift. The con-
dition applied in Table 2 is deterministic and cannot be used to
lessen or strengthen data drift. Therefore, we reserve data 𝐷𝑟 =

{(𝑥𝑖 , 𝑦𝑖 ) | (𝑥𝑖 , 𝑦𝑖 ) is sampled from 𝑃𝑡𝑟 (𝑥,𝑦), (𝑥𝑖 , 𝑦𝑖 ) ∉ 𝐷𝑡𝑟 } from the
training dataset𝐷𝑡𝑟 and control the amount of injection into the test
dataset𝐷𝑡𝑠𝑡 to construct a dataset with controlled data drift𝐷𝑐𝑜𝑛𝑡 =
𝐷𝑟 ∪ 𝐷𝑡𝑠𝑡 . By changing the cardinality ratio 𝑑𝑟 = |𝐷𝑡𝑠𝑡 |/|𝐷𝑐𝑜𝑛𝑡 |,
we can regulate influence of data drift in 𝐷𝑐𝑜𝑛𝑡 with ease; larger
data ratio from 𝐷𝑡𝑠𝑡 will have stronger data drift.

6MNIST is a binary image dataset of digits, also frequently used in MIA.
http://yann.lecun.com/exdb/mnist/
7ADULT is a tabular dataset of 14 continuous and discrete attributes used to predict
income. https://archive.ics.uci.edu/dataset/2/adult

Table 3: Data drift controlling variables.

Control Variable Value

𝑑𝑟 0, 0.2, 0.4, 0.6, 0.8, 1.0
𝑑𝜇 0, 0.1, 0.2, 0.3, 0.4
𝑑𝜎 0, 0.1, 0.2, 0.3, 0.4

On the other hand, controlling synthetic data drift is straight-
forward. Drift variables 𝑑𝜇 and 𝑑𝜎 are added to the mean 𝜇 and
standard deviation 𝜎 , respectively, during normalization. In Equa-
tion 2, 𝜇 + 𝑑𝜇 would contribute to the lateral movement of data,
while 𝜎 + 𝑑𝜎 would contribute to the scaling of the data. Table 3
lists the value of drift variables tested in this work.

4.2 Target MIA
The target attacks that will be used in evaluation are a variety of
metric-based thresholding methods. For the following attacks, we
adopt the method of calculating class-specific thresholds from Song
et al. [50] to further improve MIA accuracy.

4.2.1 MIA based on prediction correctness (A1) [26]. This attack is
based on the idea that if the model was trained on a data piece, that
data would be correctly predicted. This is a simple baseline for MIA
using the generalization gap as reasoning. An adversary will infer
a data sample as a member if it is correctly predicted, and if not, a
non-member.

𝑀𝐼𝐴𝑐𝑜𝑟𝑟 (M, (𝑥,𝑦)) = 1{argmax
𝑖

M(𝑥)𝑖 = 𝑦} (3)

1 denotes the indicator function.

4.2.2 MIA based on prediction confidence (A2) [50, 51, 60]. For data
samples that a model has been trained on, the prediction confidence
is generally higher than the prediction confidence of non-member
data. This form of attack is established on this fact, and considers a
data sample to be a member only when the prediction vector has a
confidence above a statistically derived class-specific threshold 𝜏𝑦 .

𝑀𝐼𝐴𝑐𝑜𝑛𝑓 (M, (𝑥,𝑦)) = 1{M(𝑥)𝑦 ≥ 𝜏𝑦} (4)

4.2.3 MIA based on prediction entropy (A3) [48, 50]. Training data
and test data have been shown to have different prediction entropy
distributions [48]. The training procedure of deep learning involves
the minimization of model loss, and therefore the prediction vector
will be closer to a one-hot encoded vector; the entropy of this vector
will be close to 0. Using this as motivation, this attack calculates
thresholds of this entropy value, and when the prediction entropy
is less than this threshold, the data sample is inferred as a member.

𝑀𝐼𝐴𝑒𝑛𝑡𝑟 (M, (𝑥,𝑦)) = 1{−
∑︁
𝑖

M(𝑥)𝑖 log(M(𝑥)𝑖 ) ≥ 𝜏𝑦} (5)

4.2.4 MIA based on modified prediction entropy (A4) [50, 53]. As
a variation of the MIA based on prediction entropy, this attack
addresses the issue of entropy of it not containing any informa-
tion about the ground truth label; any two one-hot vectors will
display the same entropy value of 0 when one is classified correctly
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while the other is misclassified. Therefore, the modified prediction
entropy is defined as such:

𝑀𝑒𝑛𝑡𝑟 (M, (𝑥,𝑦)) = −(1 −M(𝑥)𝑦) log(M(𝑥)𝑦)

−
∑︁
𝑖≠𝑦

M(𝑥)𝑖 log(1 −M(𝑥)𝑖 ) (6)

Similar to the inference using prediction entropy, member data
will have a smaller modified entropy value. When the modified
entropy value is less than the derived threshold, the data sample
will be inferred as a member.

𝑀𝐼𝐴𝑀𝑒𝑛𝑡𝑟 (M, (𝑥,𝑦)) = 1{𝑀𝑒𝑛𝑡𝑟 (M, (𝑥,𝑦)) ≤ 𝜏𝑦} (7)

4.3 Defense Training
The MIA defense methods that we test data drift on are the bench-
mark methods of Section 3.2: early stopping (D1) [50], dropout
(D2) [52], model-stacking (D3) [45], adversarial regularization (D4) [38],
and MemGuard (D5) [21]. Because early stopping is a critical gen-
eralization method that is commonly used in deep learning frame-
works [15], it was used in all defense methods to end training. The
parameter that was monitored for early stopping was the loss in
the validation dataset, with a patience of 10 epochs.

The base architecture that was used for defensewas ResNet18 [14].
For the dropout defense, a dropout layer was joined before the final
linear layer of ResNet18, with dropout rate of 0.5. For the model-
stacking defense, the models of the first layer are ResNet18 and
ResNet34 [14], ensembled by a logistic regression in the second
layer. The inference model used for adversarial regularization and
MemGuard have the same architecture of three linear layers of size
(1024, 512, 64) with a logistic regression for the final layer.

The architecture was trained with a stochastic gradient descent
optimizer with momentum 0.9, weight decay of 5e-4 using a 1cycle
learning rate scheduler [49]. The starting learning rate was 0.05
for all methods excluding adversarial regularization, where we
used a starting learning rate of 1e-6. We adopted the optimization
parameters of Jia et al. [21] for MemGuard, with learning rate 0.1
and 𝑐2 = 10 and 𝑐3 = 0.1. In data drift, the accuracy of the model
(classification performance) is insignificant and can be found in the
Appendix.
Membership Inference Setup: Defense models were trained us-
ing half of the training set (target train dataset) to distinguish
between the target train dataset and shadow train dataset. The
shadow train dataset is reserved to use as the data collected by
the attacker and accordingly, the thresholds used in the attacks
(Section 4.2.1-4.2.4) would be calculated using the shadow train
dataset. Note that the data used in training is not drifted data and
the drifted dataset only pertains to the non-member data used in
evaluating MIA accuracy. Using the drifted data in updating the
MIA defense to reflect data drift is done in MIAdapt, our attempt at
providing an adaptable MIA defense.

4.4 Leveraging Adaptability with MIAdapt
MIA defenses that observed adaptability (Table 1) are methods that
have the defense mechanism applied after the training of the model,
hence possess the opportunity to update the defense in response to

data drift. However, these defense methods are not implemented
for the purpose of update; these defenses cannot be applied as is
and need to be adjusted and patched to be able to accept drift infor-
mation. We propose MIAdapt, a realization and proof of concept
(POC) that updates the defense to be effective in drifted data. MI-
Adapt adds robustness to the model by incorporating drifted data
in optimizing the resulting logit vector without modifying the ma-
chine learning model itself. MIAdapt is based on MemGuard [21],
which is a work dedicated to solving the MIA Defense Problem
(Appendix A). To reflect the presence of data drift into the noise
optimization, we need to introduce a condition that restricts the
resulting sum to be from the drifted distribution—the input distri-
bution at the time of defense is drifted causing generalization gap
(𝑃𝑡𝑟 (M(𝑥), 𝑦) ≠ 𝑃𝑡𝑠𝑡 (M(𝑥), 𝑦)). Therefore, we define the problem
specific to drifted settings.

Definition 4 (Drifted MIA Defense Problem). Given a decision
function 𝑔 of the defense classifier, a confidence budget 𝜖 , s =

M(𝑥) for data (𝑥,𝑦), we aim to find a randomized noise addition
mechanism R∗ solving the following optimization problem:

argmin
R

R∗ = |𝐸R (𝑔(s + n)) − 0.5|

subject to argmax
𝑗

𝑠 𝑗 + 𝑛 𝑗 = argmax
𝑗

𝑠 𝑗

𝐸R (𝑑 (s, s + n)) ≤ 𝜖
𝑠 𝑗 + 𝑛 𝑗 ≥ 0,∀𝑗∑︁
𝑗

𝑠 𝑗 + 𝑛 𝑗 = 1

(s + n, 𝑦) ∼ 𝑃𝑡𝑠𝑡 (M(𝑥), 𝑦)

(8)

The objective function and first four constraints are imported
from the original MIA Defense Problem, and the final constraint is
the distinction caused by data drift in Definition 4. Despite its neces-
sity, the constraint as is cannot be assured; the origin distribution
of a single data point cannot be known.
Eliminating constraint via change of variables: s + n is a term
that appears in the objective function as well as all the constraints
of the Equation 8. However, the presence of drift does not affect
any of the constraints. In other words, these constraints are held
independent of the fact that s+n follows the drifted distribution. For
example, the sum of the logit vector is 1 by definition, regardless of
drift. Therefore, the only instance that the final constraint affects is
in the objective function: the objective function is the only place that
wemust consider the presence of drift.𝑔 is a decision function that is
trained to classify membership. By retraining the decision function
on the drifted distribution of data, the decision function can bewired
to interpret and process the input information as data from the
distribution 𝑃𝑡𝑠𝑡 (M(𝑥), 𝑦). Therefore to eliminate the unworkable
final constraint, 𝑔 is substituted by 𝑔∗, the decision function trained
on the drifted data. With the final constraint removed and indirectly
enforced by 𝑔∗, Equation 8 effectively becomes congruent to the
original MIA Defense Problem.
Implementing MIAdapt: Due to the change of variables to 𝑔∗, the
implementation of noise optimization is the same as MemGuard.
The only difference would be that the decision function is trained
on drifted data. Because MIAdapt is implemented by the defender,
access to the train dataset is assumed and the logit outputs of
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this data through the modelM is labeled 1. The drifted dataset is
prepared first using the methods of Section 4.1, which is then fed
intoM for the logit information and is labeled 0. The assembling of
this negative label data is essentially the supply of 𝑃𝑡𝑠𝑡 (M(𝑥), 𝑦).
Following this composition of train data for decision function 𝑔∗,
MIAdapt follows the same optimization procedure of MemGuard
in Section 4.3.

5 RESULTS
5.1 Data Drift enhances MIA
5.1.1 Evaluation on randomized datasets. The MIA accuracy of
the datasets and their drifted counterparts for each defense are
shown in Table 4. Overall, the results of randomized datasets (for
each pair of rows, the upper row) are lower than previous liter-
ature [21, 38, 45, 48, 50]. This reflects our decision of employing
early stopping (D1) in all defense methods. Because early stopping
nearly assures the prevention of overfitting in the target model, it
shows adequate defense capabilities. When early stopping is used
with other defense methods, for most occasions the MIA perfor-
mance decreases. This suggests the synergy of defense methods.
In particular, MIA accuracy decreases when early stopping is used
with other defense methods that show generalizability (D2, D3, D4).
For early stopping done on MemGuard (D5), it is less reliable than
the previous defense methods and sometimes induce MIA gain.

5.1.2 Evaluation on datasets with data drift. Compared to the MIA
performance on the original randomized data sets, the drift-generated
datasets have noticable gain in MIA performance. Excluding the
single result of𝑈𝑇𝐾 𝑓 𝑢𝑙𝑙𝑎𝑐 and its drifted dataset on prediction cor-
rectness attacks, all results for (dataset, attack, defense) triple show
an increase in MIA attack performance when tested on the drifted
data, a sign of increased MIA vulnerability. The performance of
each attack averaged on all defense methods can be seen in each
rightmost column of Table 4. The best average gain of all MIA on
each dataset is 0.075 for𝑈𝑇𝐾𝑎𝑔𝑒𝑟𝑐 , 0.089 for𝑈𝑇𝐾𝑟𝑎𝑐𝑒𝑎𝑐 , 0.17 for CIFAR-
10𝑑 , 0.125 for CIFAR-100𝑑 , 0.26 for MNIST𝑑 , and 0.035 for ADULT𝑑 .
Note that this performance increase is not due to a change in attack
methodology, but solely the effect of data drift—a change in test
dataset. Furthermore, this average gain is not biased to a certain
weak-performing defense method because the MIA defense meth-
ods do not demonstrate any particular defense improvement for
each MIA. This shows that data drift plays a significant factor
in enhancing MIA vulnerability, even when the target model
is defended with benchmark MIA defenses.

The single result that did not show increased MIA attack perfor-
mance was𝑈𝑇𝐾 𝑓 𝑢𝑙𝑙𝑎𝑐 against data drift for MIA based on prediction
correctness (A1) (Table ??). Statistically this attack method showed
to be the most unaffected by data drift. For each attack method, the
average gain of MIA vulnerability was 0.051 for A1, 0.141 for A2,
0.131 for A3, and 0.139 for A4. The relatively inferior improvement
in MIA vulnerability that data drift caused in A1 is mainly due to it
being the most naive form of MIA based on prediction correctness.
Because the datasets𝑈𝑇𝐾𝑎𝑔𝑒𝑟𝑐 and MNIST𝑑 show a relatively minor
model performance impairment (explained more in Section 6.1), the
target model was able to perform its task correctly and therefore

the attack would mislabel the drifted data samples as train data
(case of𝑈𝑇𝐾 𝑓 𝑢𝑙𝑙𝑎𝑐 and𝑈𝑇𝐾𝑟𝑎𝑐𝑒𝑎𝑐 for A1).

MIA by prediction confidence (A2) and modified entropy (A4)
are the most enhanced attacks by data drift. The resulting MIA accu-
racy gain by synthetic data drift (CIFAR-10𝑑 , CIFAR-100𝑑 , MNIST𝑑 ,
and ADULT𝑑 ) is shown to be more prominent than gain by au-
thentic drift (𝑈𝑇𝐾𝑎𝑔𝑒𝑟𝑐 and 𝑈𝑇𝐾𝑟𝑎𝑐𝑒𝑎𝑐 ). This reflects the gap between
authentic data drift generation, where the data is unprocessed, and
synthetic data drift, where the data was processed by artificial per-
turbations. However, as a concept that cannot be expected nor can
the degree of data drift be predicted, our design of data drift satisfies
the role of covariate shift simulation in the test data.

5.2 Controlling the Degree of Data Drift
Using the control variables of Table 3, we varied the degree of data
drift to the resulting test dataset and evaluatedMIA defenses (Figure
2). Due to the excessive variations in (dataset, defense, and attack)
settings, we fix the dataset and report the effect of changing the
degree of data drift with comparison to the MIA (Figure 2a-2d) and
the MIA defense (Figure 2e-2h). Two instances from both authentic
and synthetic data drift generation can be seen. In this analysis,
synthetic data drift is generated from covariate shift by mean and
covariate shift by standard deviation.

As expected, strengthening the degree of data drift increases the
MIA attack accuracy a larger amount. This effect is stronger in syn-
thetic data drift generation (Figure 2c, 2d). Unlike other controllable
variables, for a larger value of 𝑑𝜇 , a larger leakage of membership
information (Figure 2c) occurs. The rest of the controllable vari-
ables maintain a near-linear relationship with MIA success rate.
In addition, the MIA success rates in varying 𝑑𝜇 and 𝑑𝜎 show to
be nearly identical among the target attacks. This is because the
operation of applying synthetic data drift is standardized. On the
other hand, varying the cardinality in authentic data drift intro-
duces random samples to the test dataset. Compared to changing
the normalization parameters, this is bound to be noisy, hence the
wider dispersion of MIA success rate per attack. Out of the target
MIA, MIA by prediction modified entropy is the highest achieving
attack in all cases.

When comparing the defense methods, we see a similar pattern;
with stronger drift, there is stronger MIA success rate. Like the
observation of 𝑑𝜇 in Figure 2c, Figure 2g shows that for a higher 𝑑𝜇 ,
the leakage of membership information becomes greater. Finding
this trend in all target MIA and all MIA defense, 𝑑𝜇 can be seen as
the most influential variable to induce data drift. Unfortunately, the
MIA defense methods have little difference in defense capability
of data drift. There is no specific defense candidate that varies less
with the data drift control variable. In other words, no defense
benchmark is superior to the others, and all of them have a
monotonic relationship with data drift.

5.3 MIAdapt Evaluations
By taking into account the shifted input data distribution, MIAdapt
shows to be less affected by data drift and provides stronger defense
against MIA than the benchmarkMIA defense methods of Table 5 in
most attack settings. In some cases, this effect is to a significant ex-
tent, practically nullifying MIA (MIA attack success rate being near
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Table 4: MIA accuracy on multiple datasets. Each dataset pair denotes the randomized dataset and the drifted dataset. The
shaded rows show the attack success rates of the drifted datasets. Bold values show the larger MIA accuracy between the pair of
datasets.𝑈𝑇𝐾𝑎𝑔𝑒𝑟𝑐 and𝑈𝑇𝐾𝑟𝑎𝑐𝑒𝑎𝑐 denote the case of 𝑑𝑟 = 1.0 and CIFAR-10𝑑 , CIFAR-100𝑑 , MNIST𝑑 , and ADULT𝑑 denote the case of
𝑑𝜎 = 0.4. All forms of MIA on drifted datasets show an increase in MIA vulnerability.

Table 4a: MIA by prediction correctness attack (A1).

D1 D2 D3 D4 D5 Average

𝑈𝑇𝐾
𝑓 𝑢𝑙𝑙
𝑟𝑐 0.534 0.528 0.508 0.506 0.534 0.522

𝑈𝑇𝐾
𝑎𝑔𝑒
𝑟𝑐 0.584 0.604 0.602 0.588 0.607 0.597

𝑈𝑇𝐾
𝑓 𝑢𝑙𝑙
𝑎𝑐 0.516 0.525 0.523 0.513 0.516 0.519

𝑈𝑇𝐾𝑟𝑎𝑐𝑒𝑎𝑐 0.498 0.515 0.495 0.533 0.511 0.510

CIFAR-10 0.519 0.515 0.518 0.515 0.519 0.517
CIFAR-10𝑑 0.615 0.609 0.640 0.603 0.615 0.616

CIFAR-100 0.550 0.539 0.503 0.541 0.550 0.537
CIFAR-100𝑑 0.639 0.627 0.592 0.655 0.638 0.630

MNIST 0.503 0.502 0.503 0.502 0.503 0.503
MNIST𝑑 0.537 0.524 0.542 0.515 0.537 0.531

ADULT 0.496 0.497 0.500 0.495 0.500 0.498
ADULT𝑑 0.500 0.546 0.500 0.548 0.500 0.519

Table 4b: MIA by prediction confidence attack (A2).

D1 D2 D3 D4 D5 Average

𝑈𝑇𝐾
𝑓 𝑢𝑙𝑙
𝑟𝑐 0.537 0.532 0.547 0.507 0.538 0.532

𝑈𝑇𝐾
𝑎𝑔𝑒
𝑟𝑐 0.556 0.594 0.591 0.614 0.596 0.590

𝑈𝑇𝐾
𝑓 𝑢𝑙𝑙
𝑎𝑐 0.522 0.526 0.536 0.512 0.523 0.524

𝑈𝑇𝐾𝑟𝑎𝑐𝑒𝑎𝑐 0.592 0.612 0.644 0.612 0.603 0.613

CIFAR-10 0.518 0.515 0.515 0.514 0.519 0.516
CIFAR-10𝑑 0.687 0.675 0.689 0.691 0.686 0.686

CIFAR-100 0.536 0.530 0.517 0.534 0.539 0.531
CIFAR-100𝑑 0.655 0.645 0.646 0.680 0.654 0.656

MNIST 0.500 0.504 0.508 0.505 0.502 0.504
MNIST𝑑 0.836 0.807 0.875 0.786 0.837 0.828

ADULT 0.496 0.500 0.502 0.496 0.496 0.498
ADULT𝑑 0.580 0.592 0.538 0.584 0.590 0.577

Table 4c: MIA by prediction entropy attack (A3).

D1 D2 D3 D4 D5 Average

𝑈𝑇𝐾
𝑓 𝑢𝑙𝑙
𝑟𝑐 0.505 0.509 0.523 0.499 0.505 0.508

𝑈𝑇𝐾
𝑎𝑔𝑒
𝑟𝑐 0.525 0.557 0.546 0.549 0.544 0.544

𝑈𝑇𝐾
𝑓 𝑢𝑙𝑙
𝑎𝑐 0.503 0.511 0.508 0.506 0.505 0.507

𝑈𝑇𝐾𝑟𝑎𝑐𝑒𝑎𝑐 0.536 0.592 0.602 0.615 0.572 0.583

CIFAR-10 0.502 0.504 0.499 0.500 0.503 0.502
CIFAR-10𝑑 0.682 0.666 0.631 0.686 0.680 0.669

CIFAR-100 0.507 0.498 0.523 0.491 0.505 0.505
CIFAR-100𝑑 0.616 0.615 0.613 0.584 0.617 0.609

MNIST 0.500 0.506 0.507 0.503 0.501 0.503
MNIST𝑑 0.837 0.808 0.876 0.787 0.838 0.829

ADULT 0.496 0.500 0.499 0.498 0.496 0.498
ADULT𝑑 0.610 0.592 0.520 0.591 0.610 0.585

Table 4d: MIA by prediction modified entropy attack (A4).

D1 D2 D3 D4 D5 Average

𝑈𝑇𝐾
𝑓 𝑢𝑙𝑙
𝑟𝑐 0.537 0.531 0.547 0.508 0.536 0.532

𝑈𝑇𝐾
𝑎𝑔𝑒
𝑟𝑐 0.558 0.595 0.593 0.616 0.592 0.591

𝑈𝑇𝐾
𝑓 𝑢𝑙𝑙
𝑎𝑐 0.525 0.520 0.537 0.511 0.527 0.524

𝑈𝑇𝐾𝑟𝑎𝑐𝑒𝑎𝑐 0.581 0.596 0.644 0.617 0.596 0.607

CIFAR-10 0.516 0.516 0.515 0.514 0.518 0.516
CIFAR-10𝑑 0.686 0.673 0.689 0.690 0.684 0.684

CIFAR-100 0.539 0.531 0.517 0.537 0.540 0.533
CIFAR-100𝑑 0.650 0.642 0.646 0.673 0.653 0.653

MNIST 0.496 0.507 0.508 0.503 0.501 0.503
MNIST𝑑 0.834 0.806 0.875 0.785 0.835 0.827

ADULT 0.496 0.500 0.502 0.496 0.496 0.498
ADULT𝑑 0.585 0.592 0.518 0.604 0.585 0.577

0.5) for MNIST𝑑 . The bold numbers show which method is more
effective as a defense, and in the majority of dataset/attack pairs,
MIAdapt was the most effective in decreasing the MIA success rate.
Furthermore, in all the instances that a different defense method
was more effective (e.g., CIFAR-100𝑑 with attack A1), MIAdapt was
the next most effective out of all the other defenses. For the case of
MNIST𝑑 , MIAdapt has shown to decrease the MIA success rate by
an average of 0.248, the largest reduction rate observed in all drifted
datasets. These results indicate that the retraining and substitution
of the decision function 𝑔∗ proved to be an adequate enforcer for
the data drift condition of the Drifted MIA Defense Problem.

There did exist some occasional underperformance when com-
pared to early stopping (D1). By definition, D1 is the training ap-
proach with the fewest iterations, indicating faster convergence
and potentially reduced exposure of data samples for memorization
by the model. The observation that MIAdapt may occasionally lag
behind D1 in terms of performance highlights the need for further
investigation. Relying soley on reduced exposure as the optimal
defense strategy with data drift may be deemed suboptimal as it
only pertains to a subset of cases (3 out of 24 cases). Exploration of
MIAdapt along with reduced iterations in training could improve
effectiveness against MIA in the context of data drift. Neverthe-
less, MIAdapt remains the leading candidate in MIA defense
during data drift and represents the possibility of being able
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(a)𝑈𝑇𝐾𝑎𝑔𝑒
𝑟𝑐 when varying 𝑑𝑟 .
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(b)𝑈𝑇𝐾𝑟𝑎𝑐𝑒
𝑎𝑐 when varying 𝑑𝑟 .
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(c) CIFAR-10 when varying 𝑑𝜇 .
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(d) CIFAR-10 when varying 𝑑𝜎 .
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(e)𝑈𝑇𝐾𝑎𝑔𝑒
𝑟𝑐 when varying 𝑑𝑟 .
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(f)𝑈𝑇𝐾𝑟𝑎𝑐𝑒
𝑎𝑐 when varying 𝑑𝑟 .
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(g) CIFAR-10 when varying 𝑑𝜇 .
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(h) CIFAR-10 when varying 𝑑𝜎 .

Figure 2: The change in MIA success rate when varying the degree of data drift in multiple scenarios. The upper graphs compare
the attacks in the defense setting of early stopping (D1) and the lower graphs compare the defense methods in the attack setting
of MIA based on prediction modified entropy (A4). Graphs on the rest of the cases can be found in link.

to utilize current data (that is from different distribution
from the train data) to update the defense mechanism without
retraining the whole model.

Drifted Data Emphasize Themselves: The primary reason
behind the increased vulnerability of membership inference due to
data drift is rooted in the presence of drifted data, which exhibits
a markedly different logit distribution compared to the training
data. The attacks discussed in Section 4.2 pertain to threshold-based
MIAs, wherein a metric has been empirically proven to demonstrate
a distinction between trained and untrained data.

As the intensity of data drift strengthens, the distributions of
the training data and drifted data become more disparate, result-
ing in a well-defined threshold between these two distributions
(i.e. drifted data emphasize themselves similarly to outliers). MIAs
take advantage of this separation which lead to increased MIA
performance. Consequently, this explains the effectiveness of MI-
Adapt in reducing the potency of MIAs. By incorporating drifted
samples into the computation of these thresholds, MIAdapt effec-
tively lessens the separation between distributions, thus making
the problem of membership inference more challenging. As a re-
sult, MIAdapt demonstrates itself to be an adaptable and functional
defense mechanism.

6 SECURITY INSIGHT
6.1 Verifying Drift Design
The extent of drift should be considered through our design of
data drift, i.e., an appropriate or realistic scale of drift needs to be
applied to the randomized data. It is important in this work to not
overestimate data drift for a more accurate outlook on the effect

Table 5: MIA success rate on MIAdapt. The evaluations of
MIAdapt are shown on the second row of each dataset and
are compared to the defense method that shows strongest
defense capability for each dataset/attack pair. The bolded
instances mark the prominent defense for each setting.

Dataset A1 A2 A3 A4

𝑈𝑇𝐾
𝑎𝑔𝑒
𝑟𝑐

0.584 (D1) 0.556 (D1) 0.525 (D1) 0.558 (D1)
0.573 0.579 0.523 0.579

𝑈𝑇𝐾𝑟𝑎𝑐𝑒𝑎𝑐
0.498 (D1) 0.592 (D1) 0.536 (D1) 0.581 (D1)

0.538 0.588 0.579 0.580

CIFAR-10𝑑 0.609 (D2) 0.675 (D2) 0.631 (D3) 0.673 (D2)
0.542 0.575 0.568 0.575

CIFAR-100𝑑 0.592 (D3) 0.645 (D2) 0.584 (D4) 0.642 (D2)
0.618 0.624 0.581 0.621

MNIST𝑑 0.515 (D4) 0.786 (D4) 0.787 (D4) 0.785 (D4)
0.497 0.502 0.554 0.502

ADULT𝑑 0.500 (D1) 0.538 (D3) 0.520 (D3) 0.518 (D3)
0.500 0.510 0.514 0.510

of data drift to MIA defense. We assess drift extent by observing
the model accuracy on the drifted data. In practice, accuracy on the
drifted data also serves as an indicator to dispose the model and
train a new one in perspective to a service operator [6, 8]. A severe
accuracy degradation would imply excessive data drift and signal
for retraining of the model, rather than updating the adaptable
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defense. In our work, threshold for accuracy performance loss will
be when it degrades by more than 20%.

Table 6 shows the model performance on drifted data. For all
drifted data, the performance degradation does not exceed our se-
lected threshold of 20%. The greatest performance loss (P.L.) was
0.193 when the CIFAR-10 dataset was drifted by 𝑑𝜎 = 0.4. This
amount of data drift is tolerable enough to proceed without retrain-
ing the model, but troublesome enough that the defense should be
updated by MIAdapt. In the case of a less drastic extent of drift
(𝑑𝜎 = 0.3), the largest performance loss was 0.127, much below
the threshold for model retraining. This verifies that the values
of control variables (Table 3) used for data drift simulation were
appropriate and not an overestimated amount.

Furthermore, one crucial finding through verifying our drift de-
sign is that the degree of model performance loss does not equate to,
or have direct relations to, the extent of data drift onMIA vulnerabil-
ity. We look at the cases of𝑈𝑇𝐾𝑟𝑎𝑐𝑒𝑎𝑐 and𝑀𝑁𝐼𝑆𝑇𝑑 : the two drifted
datasets that show the smallest model performance loss of 0.003
and 0.058 respectively (Table 6). However, these two datasets have
different results in MIA vulnerability shown in Table 4.𝑈𝑇𝐾𝑟𝑎𝑐𝑒𝑎𝑐

shows an average MIA increase of 0.060, while𝑀𝑁𝐼𝑆𝑇𝑑 shows an
average MIA increase of 0.251, which is more than 1.5 times the
original MIA success rate.

Data drift intensely affected the MIA vulnerability in the dataset
𝑀𝑁𝐼𝑆𝑇 , while it did not have that strong of an effect in the dataset
𝑈𝑇𝐾

𝑓 𝑢𝑙𝑙
𝑎𝑐 , despite the fact that the drifted variants of the datasets

both showed minor model performance loss. This means that the
current practice of “model performance loss” being an indicator
of data drift may lead to false negatives. In other words, even if
the model performance loss does not show to be significant
to a service operator, data drift may already be present and
leave the model susceptible to MIA. As the threshold condition
for retraining itself may not be sufficient in resisting against data
drift, this brings more emphasis to an adaptable and updatable
defense such as MIAdapt. Because MIAdapt is a relatively low-cost
updatable method compared to retraining a full model, it can be
consistently used in periodic updates. By updating a model’s MIA
defense periodically, the false negative problem that the threshold
condition contains can be avoided.

6.2 Defense Options in Data Drift
As our results indicate, data drift induces increased vulnerability
to MIA attacks. As a moderator of a model who wants to coun-
teract this, there are three available options. The first option is to
maintain an up-to-date model, and this can be accomplished by
frequent retraining of the model with the current data. As shown
in Section 6.1, waiting for noticable performance degradation to
retrain a model may overlook the MIA vulnerability of models that
are less affected by data drift. Therefore the training needs to occur
on a periodic schedule. Also called offline learning, it is a default
solution for negating effects of data drift [35]. However, this option
is expensive in terms of resources, time, and cost.

The next options accept data drift circumstances and deal with
the MIA aspect. One option would be to secure the information of
train data. An adversary requires an auxiliary dataset to initiateMIA.
This auxiliary dataset illustrates the shadow data in which both

Table 6: Model performance on authentic and synthetic data
drift. P.L. is the largest performance loss due to drift.

Table 6a: Model performance on drifted datasets by 𝑑𝑟
Dataset 0.0 0.2 0.4 0.6 0.8 1.0 P.L.

𝑈𝑇𝐾
𝑎𝑔𝑒
𝑟𝑐 0.719 0.706 0.670 0.606 0.621 0.561 0.158

𝑈𝑇𝐾𝑟𝑎𝑐𝑒𝑎𝑐 0.662 0.665 0.690 0.659 0.685 0.704 0.003

Table 6b: Model performance on drifted datasets by 𝑑𝜎 .

Dataset 0.0 0.1 0.2 0.3 0.4 P.L.

CIFAR-10𝑑 0.886 0.863 0.824 0.770 0.693 0.193
CIFAR-100𝑑 0.668 0.642 0.593 0.541 0.488 0.180
MNIST𝑑 0.988 0.983 0.970 0.953 0.920 0.058
ADULT𝑑 0.840 0.835 0.818 0.785 0.760 0.080

binary classifier optimizations and metric-based thresholding MIA
use to learn the data characteristics of train and test data. When the
moderator secures the information of train data distribution to not
be leaked, composing shadow train data would be challenging. This
is a fundamental prevention of MIA, and is therefore an idealistic
solution to MIA in general. However, there are times when the
train data cannot be completely isolated; models may be trained on
public data. These cases allow the collection of shadow train data,
and therefore MIA become viable.

The last option is to employ an adaptive MIA defense. As shown
byMIAdapt (Table 5), the possibility of a defensemethod that adapts
to data drift has been confirmed. As a prototype of an adaptive
MIA defense, updating a model’s defense is relatively easier than
retraining the model. Whenever a sufficiently large batch of drifted
data is collected, the model can be updated to neutralize the effect
of data drift. By acknowledging the severe effects of data drift in
membership privacy, we hope that our prototype will serve as an
example that instigates further research on adaptive MIA defenses
in negating data drift. Future research can focus on advancing
methods of collecting and applying distribution data toMIA defense
using our design of data drift.

6.3 Limitations
While we study the effects of covariate shift, concept drift is not
explicitly addressed in this study. This omission stems from the
complexities associated with our primary focus on MIA. The exist-
ing literature on MIAs primarily revolves around the extraction of
private information from machine learning models employed for
classification tasks. In the context of classification tasks, variations
within the label distribution can be considered as elaborated in
Section 4.1, but assumptions concerning the addition or removal
of classes (concept drift) lie beyond the scope of classification; a
classification model is inductive therefore physically cannot clas-
sify a data sample with a new label that it does not already know.
Consequently, the implications of concept drift on MIA are left as
a subject for future work.

Despite the success in MIA mitigation during data drift for some
datasets, judging strictly on MIAdapt as a practical solution opens
concerns; performance-wise, MIAdapt was not optimal for all cases
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and serves its purpose only as a POC for data drift adaptability. In
addition, by being based on MemGuard, MIAdapt also bears the
inherent shortcoming that the noise optimization takes place only
after themodel is able to calculate the resulting logit vector on a data
sample. This means that MIAdapt needs to perform optimization
for every single data sample that is requested, which will cause
latency issues in deployment. It is hoped that further contributions
from others will expand and strengthen this concept of an adaptable
defense mechanism.

7 CONCLUSION
In this work, we provided the first discussion of data drift with MIA.
Our literature review on MIA defense tells us that data drift has not
been considered throughout past works and therefore unprepared
for the effects of data drift. To accommodate data drift in MIA,
we implemented a design of generating data drift: authentic data
drift controlled by cardinality ratio 𝑑𝑟 from multilabel datasets and
synthetic data drift controlled by the normalization variables 𝑑𝜇
and 𝑑𝜎 from single label datasets. Our evaluation shows that data
drift enhances MIA and penetrates the benchmark MIA defenses.
We promote the usage of MIAdapt, our POC on updating MIA
defense that shows notable mitigation performance on multiple
drifted datasets. We hope these results emphasize the risks current
MIA defenses are exposed to and that they highlight the need to
consider data drift in future MIA defense research.
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A MIA DEFENSE PROBLEM
Definition 5 (MIA Defense Problem [21]). Given a decision func-
tion 𝑔 : s → [0, 1] of the defense classifier, a confidence budget
𝜖 , a true confidence score vector s, the defender aims to find a
randomized noise addition mechanism R∗ solving the following
optimization problem:

argmin
R

R∗ = |𝐸R (𝑔(s + n)) − 0.5|

subject to argmax
𝑗

𝑠 𝑗 + 𝑛 𝑗 = argmax
𝑗

𝑠 𝑗

𝐸R (𝑑 (s, s + n)) ≤ 𝜖
𝑠 𝑗 + 𝑛 𝑗 ≥ 0,∀𝑗∑︁
𝑗

𝑠 𝑗 + 𝑛 𝑗 = 1

(9)

The first constraint maintains the logit label decision after noise
addition. The second constraint restricts the magnitude of noise n
from growing too large. The third constraint only allows positive
logit values and the final constraint makes sure the addition of
the noise adds up to 1 because it is a logit vector. The noise n is
optimized with the restraints so that the decision of the defender
classifier 𝑔 is flipped, which would effectively mean that the output
logit has evaded MIA.

B ACCURACY OF MODELS

Table 7: Model accuracy on multiple datasets.

D1 D2 D3 D4 D5

𝑈𝑇𝐾
𝑓 𝑢𝑙𝑙
𝑟𝑐 0.667 0.687 0.572 0.623 0.667

𝑈𝑇𝐾
𝑓 𝑢𝑙𝑙
𝑎𝑐 0.621 0.667 0.623 0.701 0.621

CIFAR-10 0.891 0.886 0.865 0.898 0.891
CIFAR-100 0.670 0.641 0.453 0.547 0.670
MNIST 0.989 0.991 0.990 0.991 0.989
ADULT 0.810 0.797 0.834 0.793 0.810

Table 7 shows the model accuracy of our defense methods. The
performance of these models are on-par with the reported perfor-
mance of previous works. Because our work concerns data drift
(test data distribution is different from train data distribution), the
model accuracy is not critical, and only used to assure that a model
was trained properly.
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