
Reinhardt: Real-time Reconfigurable Hardware Architecture for
Regular Expression Matching in DPI

Taejune Park
taejune.park@jnu.ac.kr

Chonnam National University
Republic of Korea

Jaehyun Nam
jn@accuknox.com

AccuKnox
USA

Seung Ho Na
harry.na@kaist.ac.kr

KAIST
Republic of Korea

Jaewoong Chung
jaewoong.chung@atto-research.com

Atto Research
Republic of Korea

Seungwon Shin
claude@kaist.ac.kr

KAIST
Republic of Korea

ABSTRACT
Regular expression (regex) matching is an integral part of deep
packet inspection (DPI) but a major bottleneck due to its low per-
formance. For regex matching (REM) acceleration, FPGA-based
studies have emerged and exploited parallelism by matching mul-
tiple regex patterns concurrently. However, even though guaran-
teeing high-performance, existing FPGA-based regex solutions do
not still support dynamic updates in run time. Hence, it was in-
appropriate as a DPI function due to frequently altered malicious
signatures. In this work, we introduce Reinhardt, a real-time re-
configurable hardware architecture for REM. Reinhardt represents
regex patterns as a combination of reconfigurable cells in hardware
and updates regex patterns in real-time while providing high per-
formance. We implement the prototype using NetFPGA-SUME, and
our evaluation demonstrates that Reinhardt updates hundreds of
patterns within a second and achieves up to 10 Gbps throughput
(max. hardware bandwidth). Our case studies show that Reinhardt
can operate as NIDS/NIPS and as the REM accelerator for them.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems;Hard-
ware security implementation.

KEYWORDS
Deep Packet Inspection, Pattern matching, Regex, Hardware

ACM Reference Format:
Taejune Park, Jaehyun Nam, Seung Ho Na, Jaewoong Chung, and Seungwon
Shin. 2021. Reinhardt: Real-time Reconfigurable Hardware Architecture for
Regular Expression Matching in DPI. In Annual Computer Security Applica-
tions Conference (ACSAC ’21), December 6–10, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3485832.3485878

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’21, December 6–10, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00
https://doi.org/10.1145/3485832.3485878

1 INTRODUCTION
As network traffic has become sophisticatedwith time, payload anal-
ysis has also become an essential operation in network protection.
In that sense, Deep packet inspection (DPI) that analyzes packet
payloads plays a central role in classifying and handling application
traffic as well as security (network intrusion detection/prevention
systems (NIDS/IPS) [64, 66, 84]). The DPI system in modern net-
works should satisfy high performance and dynamic updatability to
deal with a large amount of traffic and rapidly-changing networks
[4, 7, 20, 72, 74, 79]. Unfortunately, regular expression matching
(REM) is considered the major obstacle in achieving them; REM
is the essential function of DPI because it enables DPI to search
matches in packet payloads with specific patterns efficiently. How-
ever, as REM is commonly implemented by Finite-State Machines
(FSM), a time-consuming and computationally intensive operation,
REM is the major bottleneck in DPI performance. Thus, several
trials have been to accelerate REM using hardware, mainly based
on Field-Programmable Gate Arrays (FPGA), by matching multiple
regex patterns in parallel to support deterministic high performance
[29, 30, 44, 48, 62, 65, 82].

However, FPGA-based REM raises three critical obstacles in
adoption as DPI in practice due to the lack of dynamic updatability.
First, updating patterns in FPGA takes a significant amount of time.
Any pattern change requires a long compilation (i.e., synthesis,
map, placement, and routing), which may take at least a couple
of hours. Second, while updating, service interruption is inevitable
for initializing the device, which exposes a network to potential
threats, and which impedes service availability. Lastly, the update
has to perform in an all-or-nothing fashion. Even a tiny pattern
change requires the entire recompilation processes and service
interruptions to commence; the on-demand update of patterns is
a burdensome task. FPGA-based REM has these challenges due
to difficulty in update tasks, and therefore not very suitable for
NIDS/IPSwhere signatures should be frequently updated to respond
against emerging attacks. Also, while this issue in FPGA-based
REM has been pointed out for years, it still remains as a significant
unsolved limitation [14, 39, 75, 79].

To grant dynamic updatability to FPGA-based REM, we pro-
pose a real-time reconfigurable hardware architecture for high-
performance DPI, Reinhardt. We shift the paradigm of regex pattern
matching on FPGA from a circuit level to a logic level; Reinhardt
consists of reconfigurable cells that can change their connections

https://doi.org/10.1145/3485832.3485878
https://doi.org/10.1145/3485832.3485878

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Taejune Park, Jaehyun Nam, Seung Ho Na, Jaewoong Chung, and Seungwon Shin

in real-time. The combination of the cells will implement FSM cor-
responding to given regex patterns by our conversion algorithm.
Therefore, the deployment and modification of regex patterns per-
form fast and dynamically without the long compilation and service
interruptions. Furthermore, applying this updatability, Reinhardt
stores the information of cell connections in memory and can dy-
namically fetch them by swapping pattern sets in processing, al-
lowing a packet to be inspected with multiple patterns continuosly.

We implement a Reinhardt prototype using NetFPGA-SUME
[52, 85]. Our prototype supports 1.4-10 Gbps throughput with 800-
160 regex patterns, respectively. The updating time is less than one
second without service interruption, outperforming today’s FPGA-
based solutions. Also, comparing with DPDK-Hyperscan [35, 78],
Reinhardt has competitive benefits in providing stable performance,
enabling deterministic processing. Our case studies on NIDS/IPS
and Snort IDS acceleration using Reinhardt give an intuition on how
to leverage the unique strengths of Reinhardt as high-performance
security services. In particular, Reinhardt NIDS/IPS covers up to
87% of signatures in Snort 2.9.7 default rules (6,411 signatures), and
the hardware acceleration improves the overall throughput up to
65 times the original performance.

2 BACKGROUND AND MOTIVATION
Regular expressions (regex) are helpful to structurize a string that
contains a set of specific patterns (e.g., attack signatures) with
metacharacters having a special meaning for literal characters. Thus,
regex matching (REM) becomes one of the most critical functions
in DPI to search for one or more matches of specific patterns in
an observation string (i.e., packet payload). This section presents
the performance degradation in DPI caused by REM and discusses
the challenges of previous efforts for accelerating the matching
performance by parallelizing the matching process using FPGA.

2.1 Performance Degradation in REM
REM generates an equivalent finite-state machine (FSM) for a given
regex pattern and drives the state machine on an observation string.
Unfortunately, traversing an FSM is time-consuming and memory-
intensive work because it has to inquire state transitions over its
state graph on each input character from an observation string.
Also, as the complexity and number of regex patterns increase, REM
requires more memory access to read the string and continuously
traverse multiple state graphs. The complexity of its matching
process leads to significant performance degradation.

We evaluate how REM severely causes performance degrada-
tion by conducting a microbenchmark through the PCRE engine
[28] of Snort 2.9.7 [64], one of the most popular regex engines. For
this, we randomly select regex patterns from the default Snort rule-
set (i.e., select patterns having “pcre” option), and those randomly
selected rules contain 1.6 (noted as Simple) and 7.6 (noted as Com-
plex) metacharacters on average, respectively. This evaluation is
conducted on Intel Xeon E5-2630, and the input traffic is generated
by Intel DPDK-Pktgen [35].

Figure 1 illustrates the performance variations with different
complexity and number of regex patterns. We dramatically see
throughput degradations as the number of regex patterns increases;
With 50 simple and complex rules, the throughputs become 153 and

7.6G
7.2G

6.8G

153M 67.2M 49.0M 0.6M

∗ Simple and complex regex patterns contain 1.6 and 7.6 metacharacters on average.

Figure 1: PCRE Performance variations in Snort IDS

67 Mbps, respectively, dropping up to 97.9% and 99.1% compared to
No pattern. With 100 rules, the throughputs are no longer viable.
While the throughput is declining, the latency increases from 50 µs
to 273 µs, 5.5 times the baseline with the number of patterns and
complexity. These performance degradations mostly come from
frequent state transitions along input strings (packet payloads) and
metacharacter operations, incurring heavy memory accesses. Also,
as the number of rules increases, the impact of the state transition
overhead gets accumulated. These results conclude that REM is a
bottleneck and should be improved for practical deployments.

2.2 Accelerating REM via Hardware (FPGA)
As depicted in Figure 1, REM suffers from the performance issue.
Thus, to improve the performance of REM, prior studies have sug-
gested some hardware accelerated approaches using FPGA [29, 30,
44, 48, 62, 65, 82] 1; FPGA-based REM situates the state machines
of regex at a circuit level (H/W) and works massively parallel by
exploiting the natural parallelism of hardware, and can be directly
connected to network interfaces (i.e., bump-in-the-wire). Thus, they
can handle incoming packets in a constant time regardless of the
number of patterns and without an unnecessarily cumbersome
procedure such as copying to memory, CPU, and applications, guar-
anteeing deterministic performance [12, 16, 24, 70]. Thus, FPGA-
based solutions are more welcomed for mission-critical systems
and time-sensitive networks [23, 27, 42, 60].

For regex processing, FPGA-based solutions mostly adopt non-
deterministic finite automata (NFA) rather than deterministic-finite
automata (DFA) [62, 79]. It is because 1) parallel processing in
hardware allows concurrent access to multiple states, efficiently
handling non-deterministic states, and 2) DFA requires much larger
space than NFA while the space is one of the sensitive issues in
FPGA due to its limited resource. Thus, we will describe this paper
based on NFA-based REM.

2.3 Challenges in FPGA-based REM
Although the FGPA-based approaches improve the performance in
DPI of REM, real networks often hesitate to adopt them as a critical
function of DPI because of the limited flexibility on the FPGAs tied
to specific implementations [14, 39, 75, 79]. Here, we discuss three
critical challenges of FPGA-based REM.

1Note that, in this paper, FPGA-based approaches mean only a circuit-based approach,
not including memory-based approaches like [2, 8, 11, 68]. Because the memory-
based one features sequential processing, it does not fully support massively parallel
processing [10], i.e., out of our scope.

Reinhardt: Real-time Reconfigurable Hardware Architecture for Regular Expression Matching in DPI ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Regex Engine # of Patterns Time (hh:mm:ss)
Sourdis et al. [65] 1,504 4:53:50

310 0:45:49
Bisop et al. [10] 310 1:47:00

Johnson & Mackenzie [38] 200 1:38:57
Ganegedara et al. [25] 760 1:52:00

Table 1: Compilation time on previous FPGA-based REM

Flow A
Simple

IPSFlow B

Inspect and drop
Flow B!

Payload
Matching

Pattern to Circuit

(a) Evaluation config.
0 2 4 6 921 923 925 927 929 9310 2 4 6 921 923 925 927 929 931

1

0

De
liv

er
ed

 ra
te Try pattern update

Start compilation

Initialize
device

Recover delivery

End compilation

Drop by
the pattern

Time (sec)

0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10

Traffic A
Traffic B

(b) Traffic delivery rate
Figure 2: Update response time of the simple H.W-based IPS

C1. Long compilation time: Unlike software-based solutions,
FPGA-based solutions require the compilation process (i.e., syn-
thesis, mapping, placement, and routing) to update regex patterns
at a circuit level. It takes several hours, presenting difficulty in
applying specific regex patterns into FPGA without long delay
[40, 41, 46, 75]. Table 1 shows the compilation time of existing so-
lutions [10, 25, 38, 65]. While it is difficult to directly compare their
update times due to different design goals and the complexity of
target regex patterns, we can see that updating regex patterns is a
time-consuming task.

C2. Inevitable service interruption: After the compilation
process, FPGAs require a system halt due to the initialization with
updated regex patterns. During this time, the device will be in-
terrupted from several seconds to a couple of minutes. In terms
of serviceability, networks are temporarily unavailable during the
initialization, increasing an operational burden.

C3. All-or-Nothing update operation: FGPA-based solutions
should update new patterns in an all-or-nothing fashion since regex
patterns deployed in FGPA are statically fixed at a circuit level
[40, 41, 46, 75]. Even a tiny change in regex patterns requires the
entire compilation process and initialization of FPGA. It enforces
the pattern updates regularly (stacking updates and applying them
at once) instead of actively applying the patterns on demand.

We demonstrate these challenges with a simple evaluation. As
shown in Figure 2a, while Flow A and B pass through a simple
FPGA-based IPS, we try to deploy a new pattern, which inspects
packet payloads and drops Flow B at 5 seconds, and measures
the time when the IPS blocks flow B. The hardware platform is
NetFPGA-SUME [52], and the pattern was compiled using Vivado
2016.04 on Xeon E5-2630. As we can see in Figure 2b, it spends
about 15 minutes only to compile the single pattern. Moreover, while
installing the newly compiled pattern, the IPS stopped about 10
seconds for device initialization so that Flow A is also dropped
unintendedly. At last, all update procedures are completed after 924
seconds, and the pattern is working properly to filter Flow B only.

Reinhardt Core

Memory

Input Queue

Reinhardt Framework

Event Listener

API Provider

Reinhardt App

Regex patterns Event Handler

H
os

t S
.W

.
D

at
ap

at
h

(F
PG

A)

Regex Converter

Matched

Input Action

(a) Architecture

AB

C

D

AB
C
D

(AB|C)+D

Input

(b) Workflow

Figure 3: Overall Design of Reinhardt

2.4 Near Real-time Rule Update in DPI
It has not been a serious concern to update DPI rules (for pattern
matching) in near real-time. We can stop or delay the operation of a
hardware/software system for DPI services, upload newly compiled
DPI patterns to the system, and relaunch the system after any
update. This delayed operation was not a big problem so far.

However, the rapid increase in malware also drives the need
for real-time updates in DPI as NIDS/IPS to detect known attack
patterns (i.e., signatures) in the packet payload. According to the
statistics of common vulnerabilities and exposures (CVE) [1, 49],
more than 30 new vulnerabilities are registered on their index every
day. Hence, to keep security up to date, we should update DPI rules
(i.e., signatures) that can detect those vulnerabilities immediately;
Indeed, in the update history of signatures [18], one or two updates
occur every day, and also updates for critical threats sometimes
occur multiple times within hours. For this reason, previous works
[4, 7, 20, 72, 74, 79] as well as many eminent security articles [13,
17, 22, 33, 61, 67] address dynamic updatability as the main aspects
to consider for NIDS/IPS.

Moreover, these days, as the development of network technol-
ogy (e.g., 5G/6G) enables many things to connect to a network,
numerous systems and services are provided over the network and
cloud infrastructure, and DPI is not an option but plays a central
role in handling heterogeneous protocols from the diverse sys-
tems/services [5, 21, 32, 54, 59]. Among them, since it contains
mission-critical and time-sensitive services where network failure
can cause catastrophic consequences such as automotive, smart fac-
tory, healthcare, and smart sensors, the network should guarantee
reliable communication without loss [3, 19, 26, 47, 56, 69, 73].

3 DESIGN
Our design principles for a dynamic updatable FPGA-based REM
are twofold. First, the compilation process must be minimized to
apply new and updated regex patterns dynamically. Second, regex
patterns in FPGA must be updated without service interruption.
Considering these factors, we propose a novel reconfigurable FPGA
architecture, called Reinhardt, that introduces new FPGA blocks

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Taejune Park, Jaehyun Nam, Seung Ho Na, Jaewoong Chung, and Seungwon Shin

{ {Input cells Logic cells

Pa
ck

et
 b

yt
es

tr
ea

m

(a) Design of Reinhardt Core

Input CellBy
te

st
re

am

…!
In.
Out.

Begin / Not / Last flags

(b) Input cell

Edge Cell

Counter

Top

RightLe
ft

Bottom

(c) Logic cell
Figure 4: Design of Reinhardt Core

called reconfigurable cells; It transforms given regex patterns repre-
sented in NFA to a composition of the reconfigurable cells, allowing
the regex patterns to be deployed into hardware in real-time with
no service interruption. Their configurations are made by a host
software so that administrators can update specific regex patterns
on-demand, on-time in a programmable way.

Figure 3 shows the design of Reinhardt and its workflow. Rein-
hardt ismainly composed of two parts: datapath in hardware (FPGA)
and a software framework on the host side. Three sub-components
(i.e., core, memory, and input queue) process an observation string
in the datapath. More specifically, the Reinhardt core consists of a
set of reconfigurable cells that are connected in aw × h grid topol-
ogy with input/output ports for each direction, Top-Bottom-Left-
Right. Each cell can dynamically determine the output directions
of the input signals in accordance with Reinhardt configurations.
In the software, a regex converter and an event listener manages
and controls the Reinhardt datapath. The framework provides APIs
which allow Reinhardt applications to update regex patterns and
receive messages from the datapath.

The most significant advantage of Reinhardt is to update regex
patterns in real-time onto hardware without any service interrup-
tion. An update includes all actions related to managing regex pat-
terns, such as 1) deploying new patterns and 2) modifying/removing
parts of a previously deployed pattern. The key idea of Reinhardt is
that a target regex is directly represented by state machines in the
Reinhardt core through a combination of the cell connections.

As seen in Figure 3b, when given regular expressions, the corre-
sponding NFA structures are represented as the combination of the
reconfigurable cells by the Regex Converter. The conversion results
are stored in the memory to change the input/output directions
of the cells in the core; thus, the equivalent state machines for the
regex patterns are implemented in real-time. The current design of
Reinhardt can support all common metacharacters. An observation
string is inspected by driving the NFA logic in the core, and if any
matched pattern is found, the Reinhardt core sends a notification to
the event listener on the host. Then, the event listener notifies ap-
plications that utilize the event handler and take actions according
to the matched result, e.g., blocking suspected traffic or updating
the list of patterns to strengthen inspection.

3.1 Reinhardt Core
To understand how Reinhardt implements NFA in FPGA, we view
the structure of the Reinhardt core. Figure 4 illustrates the w ×

h Reinhardt core. It consists of two kinds of reconfigurable cells;
the 0th column of the grid is composed of input cells, and the
rests are logic cells. Each cell is connected to neighbor cells by the
input/output ports for each direction Top-Bottom-Left-Right, and
the position of each cell is expressed in (x , y) coordinates. On the
left side of the core, the character input bus is connected to the
input cells, and the ϵ-signal bus and accept-signal bus on the other
side are connected to the logic cells.

For regex pattern matching, a given regex pattern is converted
into NFA in the core by combining the abovementioned cells. The
pattern is split into substrings and metacharacters, and the sub-
strings are placed in the input cells while the respective connection
of logic cells represents their relation (i.e., operation by metachar-
acter). For clarification, a regex pattern of ‘abc|xyz’ would be sep-
arated into substrings ‘abc’ and ‘xyz’. The metacharacter ‘|’ would
be expressed by the connection of the logic cells afterward.

Input cell (Figure 4b): The input cells represent states, and they
are activated or transitioned via the input/output ports connected
to the logic cells on the right side of the input cells. The input
cells are the linear-chained automata states of length m, which
works as a simplem string matcher. An input cell starts comparing
observation characters when their state is activated and executes a
state transition to the output port when all characters match. Input
cells can function as a simple string matcher, but they can compare
observation characters with a min-max range. For example, to find
a character between ‘a’ and ‘f’ (i.e., a bracket expression [a-f]),
the min target character is set as ‘a’, and the max target character
is set as ‘f’. Also, the input cell can take flags about the observation
character to indicate the beginning and end of the string or not
contained condition (i.e., ^,$ and [^]).

Logic cell (Figure 4c): It serves as the directed edges connect-
ing the states in state machines. They function by forwarding input
signals (i.e., state transition) from each direction to designated di-
rections by opening/closing internal gates and switches. In addition,
the logic cells include a counter that can measure how many times
a state transition occurs in its region, allowing logic cells to imple-
ment states where the condition has to be met a certain number of
times, helping express interval operators {m,n}.

Core I/O: There are three input/output buses to drive NFA logics
in the core; 1) The character input bus delivers each character in
the observation string (i.e., packet bytestream) sequentially to all
input cells every clock; thus, all NFA logics implemented in the
core will work simultaneously. 2) The ϵ-signal indicates the start
of the NFA by triggering the initial state (i.e., the input cell for the
first substring of a given regex pattern) through the logic cells. 3)
The accept-signal notifies the end of the NFA by triggering the final
state (i.e., the input cell for the last substring). This signal is sent
when the observation string matches the given regex pattern.

3.2 Converting Regex to Reinhardt Cell Logic
We follow Thompson’s algorithm to transform a regex pattern to
its NFA [71]; a given regex pattern is split into its constituent subex-
pressions (i.g., literal characters and metacharacters) and converted
to partial NFAs. The concatenation of the partial NFAs constructs
the complete NFA.

Reinhardt: Real-time Reconfigurable Hardware Architecture for Regular Expression Matching in DPI ACSAC ’21, December 6–10, 2021, Virtual Event, USAReinhardt: Real-time Reconfigurable Hardware Architecture for Regular Expression Matching in DPI ACSAC ’21, December 6–10, 2021, Virtual Event, USA

NFA snippet Logic Template NFA snippet Logic template
[0-9] A{m,n} / A{m} / A{m,}

0 ~ 9
[0,9]

(Match to
min/max range)

A

m ≤ A ≤ n A m ≤ A ≤ n

(With a counter)

^A [^a-z]

begin A
Abegin

(With ‘begin’ flag)
nota ~ z

[a,z]not

(With ‘not’ flag)
A$ A*

last A
Alast

(With ‘last’ flag)
A A

A+ A?

A A A A

A|B (AB)(CD)
A

B

A

B
ABABAB CD

AB

CD

Table 2: Templates for Regex Pattern to Reinhardt Logic

Algorithm 1: Regex Pattern to Reinhardt Cell Logic
Input: start_row, Start row in the Reinhardt core
Input: regex, Given regex pattern
row← start_row
STACK (𝑖𝑛 [𝑥, 𝑦,𝑑], 𝑜𝑢𝑡 [𝑥 ′, 𝑦′, 𝑑′]) // Stack for IN/OUT

// 𝑥, 𝑦,𝑑: cell coordinates with its direction

postfix← Regex_to_postfix (regex)
foreach Character c in postfix do

switch c do
case ‘Literal’ do

setInput (row, c);
if c is End of Substring then

PUSH ([0, row, ‘R’], [0, row, ‘R’]);
row← row +1;

case ‘Unary_metachar’ do
[in1, out1]← POP();
[in’, out’]← setTemplate (c, [in1, out1]);
PUSH ([in’, out’]);

case ‘Binary_metachar’ do
[in2, out2]← POP(); [in1, out1]← POP();
[in’, out’]← setTemplate (c, [in1, out1], [in2, out2]);
PUSH ([in’, out’]);

[in1, out1]← POP()
setESignal (in1)
setAcceptSignal (out1)

to Thompson’s algorithm. The subexpression is classified as sub-
strings and metacharacters, and each subexpression is templatized,
representing their partial NFA structures by a combination of the
cells as described in Table 2. Connecting the templates builds up
the more extensive NFA logic recursively in the core.

Algorithm 1 describes this operation. It first takes the number of
a start row in the core to place a generated NFA and a target regex
pattern to deploy and initializes a stack that stores the input/output
coordinate and its direction (i.e., Top-Bottom-Left-Right) for the last
generated partial NFA(s) so far. Then, the given regex pattern is
converted to the postfix form to reflect the precedence in which the
partial NFAs are generated and parsed by reading the postfix se-
quentially. 1) The substrings are placed in the input cell on each row,
and whenever input of one substring is completed, one substring is
considered as one small NFA so that the input/output coordinates
of its input cell are stored in the stack (In here, the I/O port of the
input cell is always the right side, so the directions are fixed at R). 2)

a bε

ε

ε ε
c d

ε

X{1,3} [0-9] ε

ε

(a: Initial) (b: ‘(ab|cd)+’) (c: ‘X’) (d: ‘{1,3}’) (e: ‘[0-9]*’) (f: Final)

ε

(a) NFA State Diagram for ‘(ab|cd)+X{1,3}[0-9]*’

(a)

(b)

(e)
(f)

(c)
(d)

ab

X

cd

[0-9]

1 ≤ n ≤ 3

(b) NFA on the Reinhardt core
Figure 5: Deployment of Regex Pattern to Reinhardt

The metacharacter reads the coordinates of the recently generated
partial NFAs from the stack by the number of required operands
and synthesizes the operand NFA(s) into a bigger NFA with the
metacharacter template. Then, the input/output coordinates of the
bigger NFA are stored as the new partial NFA. As this operation is
recursively performed, the entire NFA is completed by connecting
the 𝜖 and accept signals to the last stacked NFA. Finally, this result
is transferred and stored to the hardware memory.

3.3 Pattern Deployment Breakdown
Figure 5 shows the deployed Reinhardt logic for regex ‘(ab|cd)+X
{1,3}[0-9]*’ on the 4 × 4 Reinhardt core from Algorithm 1 (See
Appendix A for the detailed steps). Comparing its state diagram
to the configured logic (Figure 5a and 5b), the edges of the state
diagram are represented by the logic cells in the same shape, and the
characters chained in linear are represented by the input cells. Each
subexpression is mapped one to one, resulting in the Reinhardt core
consequently implementing the equivalent state machine; starting
from the 𝜖-signal of (a) in Figure 5b, the state of the observation
string is transitioned through each section until (f). This accept-
signal notes that the observation string matches the regex pattern
and that it is accepted. Conversely, removing a pattern is done
simply by initializing the involved cells. New patterns can use the
initialized spaces; the modification of a deployed pattern is made by
generating new logic for the modified pattern from the algorithm,
releasing the previous logic placing the new logic at that place.

Here, We note that the size of the Reinhardt core in this example
is only 4 × 4 with one regex pattern, but it is only scaled down for
clear understanding. The actual core size is larger and can represent
a more complex and more number of regex. Generally, as the width
𝑤 of the core increases, more metacharacters can be represented
(i.e., a more complex regex pattern), and as the height of the core
ℎ increases, more regex patterns can be expressed and matched
simultaneously. The size of the core is closely related to available
FPGA resource, and the details are covered in §5.

Table 2: Templates for Regex Pattern to Reinhardt Logic

Reinhardt: Real-time Reconfigurable Hardware Architecture for Regular Expression Matching in DPI ACSAC ’21, December 6–10, 2021, Virtual Event, USA

NFA snippet Logic Template NFA snippet Logic template
[0-9] A{m,n} / A{m} / A{m,}

0 ~ 9
[0,9]

(Match to
min/max range)

A

m ≤ A ≤ n A m ≤ A ≤ n

(With a counter)

^A [^a-z]

begin A
Abegin

(With ‘begin’ flag)
nota ~ z

[a,z]not

(With ‘not’ flag)
A$ A*

last A
Alast

(With ‘last’ flag)
A A

A+ A?

A A A A

A|B (AB)(CD)
A

B

A

B
ABABAB CD

AB

CD

Table 2: Templates for Regex Pattern to Reinhardt Logic

Algorithm 1: Regex Pattern to Reinhardt Cell Logic
Input: start_row, Start row in the Reinhardt core
Input: regex, Given regex pattern
row← start_row
STACK (𝑖𝑛 [𝑥, 𝑦,𝑑], 𝑜𝑢𝑡 [𝑥 ′, 𝑦′, 𝑑′]) // Stack for IN/OUT

// 𝑥, 𝑦,𝑑: cell coordinates with its direction

postfix← Regex_to_postfix (regex)
foreach Character c in postfix do

switch c do
case ‘Literal’ do

setInput (row, c);
if c is End of Substring then

PUSH ([0, row, ‘R’], [0, row, ‘R’]);
row← row +1;

case ‘Unary_metachar’ do
[in1, out1]← POP();
[in’, out’]← setTemplate (c, [in1, out1]);
PUSH ([in’, out’]);

case ‘Binary_metachar’ do
[in2, out2]← POP(); [in1, out1]← POP();
[in’, out’]← setTemplate (c, [in1, out1], [in2, out2]);
PUSH ([in’, out’]);

[in1, out1]← POP()
setESignal (in1)
setAcceptSignal (out1)

to Thompson’s algorithm. The subexpression is classified as sub-
strings and metacharacters, and each subexpression is templatized,
representing their partial NFA structures by a combination of the
cells as described in Table 2. Connecting the templates builds up
the more extensive NFA logic recursively in the core.

Algorithm 1 describes this operation. It first takes the number of
a start row in the core to place a generated NFA and a target regex
pattern to deploy and initializes a stack that stores the input/output
coordinate and its direction (i.e., Top-Bottom-Left-Right) for the last
generated partial NFA(s) so far. Then, the given regex pattern is
converted to the postfix form to reflect the precedence in which the
partial NFAs are generated and parsed by reading the postfix se-
quentially. 1) The substrings are placed in the input cell on each row,
and whenever input of one substring is completed, one substring is
considered as one small NFA so that the input/output coordinates
of its input cell are stored in the stack (In here, the I/O port of the
input cell is always the right side, so the directions are fixed at R). 2)

a bε

ε

ε ε
c d

ε

X{1,3} [0-9] ε

ε

(a: Initial) (b: ‘(ab|cd)+’) (c: ‘X’) (d: ‘{1,3}’) (e: ‘[0-9]*’) (f: Final)

ε

(a) NFA State Diagram for ‘(ab|cd)+X{1,3}[0-9]*’

(a)

(b)

(e)
(f)

(c)
(d)

ab

X

cd

[0-9]

1 ≤ n ≤ 3

(b) NFA on the Reinhardt core
Figure 5: Deployment of Regex Pattern to Reinhardt

The metacharacter reads the coordinates of the recently generated
partial NFAs from the stack by the number of required operands
and synthesizes the operand NFA(s) into a bigger NFA with the
metacharacter template. Then, the input/output coordinates of the
bigger NFA are stored as the new partial NFA. As this operation is
recursively performed, the entire NFA is completed by connecting
the 𝜖 and accept signals to the last stacked NFA. Finally, this result
is transferred and stored to the hardware memory.

3.3 Pattern Deployment Breakdown
Figure 5 shows the deployed Reinhardt logic for regex ‘(ab|cd)+X
{1,3}[0-9]*’ on the 4 × 4 Reinhardt core from Algorithm 1 (See
Appendix A for the detailed steps). Comparing its state diagram
to the configured logic (Figure 5a and 5b), the edges of the state
diagram are represented by the logic cells in the same shape, and the
characters chained in linear are represented by the input cells. Each
subexpression is mapped one to one, resulting in the Reinhardt core
consequently implementing the equivalent state machine; starting
from the 𝜖-signal of (a) in Figure 5b, the state of the observation
string is transitioned through each section until (f). This accept-
signal notes that the observation string matches the regex pattern
and that it is accepted. Conversely, removing a pattern is done
simply by initializing the involved cells. New patterns can use the
initialized spaces; the modification of a deployed pattern is made by
generating new logic for the modified pattern from the algorithm,
releasing the previous logic placing the new logic at that place.

Here, We note that the size of the Reinhardt core in this example
is only 4 × 4 with one regex pattern, but it is only scaled down for
clear understanding. The actual core size is larger and can represent
a more complex and more number of regex. Generally, as the width
𝑤 of the core increases, more metacharacters can be represented
(i.e., a more complex regex pattern), and as the height of the core
ℎ increases, more regex patterns can be expressed and matched
simultaneously. The size of the core is closely related to available
FPGA resource, and the details are covered in §5.

To implement NFA in the Reinhardt core, the Reinhardt software
enforces the cell configurations to construct the NFA logic similarly
to Thompson’s algorithm. The subexpression is classified as sub-
strings and metacharacters, and each subexpression is templatized,
representing their partial NFA structures by a combination of the
cells as described in Table 2. Connecting the templates builds up
the more extensive NFA logic recursively in the core.

Algorithm 1 describes this operation. It first takes the number of
a start row in the core to place a generated NFA and a target regex
pattern to deploy and initializes a stack that stores the input/output
coordinate and its direction (i.e., Top-Bottom-Left-Right) for the last
generated partial NFA(s) so far. Then, the given regex pattern is
converted to the postfix form to reflect the precedence in which the
partial NFAs are generated and parsed by reading the postfix se-
quentially. 1) The substrings are placed in the input cell on each row,
and whenever input of one substring is completed, one substring is
considered as one small NFA so that the input/output coordinates

a bε

ε

ε ε
c d

ε

X{1,3} [0-9] ε

ε

(a: Initial) (b: ‘(ab|cd)+’) (c: ‘X’) (d: ‘{1,3}’) (e: ‘[0-9]*’) (f: Final)

ε

(a) NFA State Diagram for ‘(ab|cd)+X{1,3}[0-9]*’

(a)

(b)

(e)
(f)

(c)
(d)

ab

X

cd

[0-9]

1 ≤ n ≤ 3

(b) NFA on the Reinhardt core
Figure 5: Deployment of Regex Pattern to Reinhardt

of its input cell are stored in the stack (In here, the I/O port of the
input cell is always the right side, so the directions are fixed at R). 2)
The metacharacter reads the coordinates of the recently generated
partial NFAs from the stack by the number of required operands
and synthesizes the operand NFA(s) into a bigger NFA with the
metacharacter template. Then, the input/output coordinates of the
bigger NFA are stored as the new partial NFA. As this operation is
recursively performed, the entire NFA is completed by connecting
the ϵ and accept signals to the last stacked NFA. Finally, this result
is transferred and stored to the hardware memory.

3.3 Pattern Deployment Breakdown
Figure 5 shows the deployed Reinhardt logic for regex ‘(ab|cd)+X
{1,3}[0-9]*’ on the 4 × 4 Reinhardt core from Algorithm 1 (See
Appendix A for the detailed steps). Comparing its state diagram
to the configured logic (Figure 5a and 5b), the edges of the state
diagram are represented by the logic cells in the same shape, and the
characters chained in linear are represented by the input cells. Each
subexpression is mapped one to one, resulting in the Reinhardt core
consequently implementing the equivalent state machine; starting
from the ϵ-signal of (a) in Figure 5b, the state of the observation
string is transitioned through each section until (f). This accept-
signal notes that the observation string matches the regex pattern
and that it is accepted. Conversely, removing a pattern is done
simply by initializing the involved cells. New patterns can use the
initialized spaces; the modification of a deployed pattern is made by
generating new logic for the modified pattern from the algorithm,
releasing the previous logic placing the new logic at that place.

Here, We note that the size of the Reinhardt core in this example
is only 4 × 4 with one regex pattern, but it is only scaled down for
clear understanding. The actual core size is larger and can represent
a more complex and more number of regex. Generally, as the width
w of the core increases, more metacharacters can be represented
(i.e., a more complex regex pattern), and as the height of the core
h increases, more regex patterns can be expressed and matched
simultaneously. The size of the core is closely related to available
FPGA resource, and the details are covered in §5.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Taejune Park, Jaehyun Nam, Seung Ho Na, Jaewoong Chung, and Seungwon Shin

Input Queue

Packet 0
Packet 1

Packet n
…

Reinhardt Memory

2

1

… …

(d) Resubmit

(a) Request

(b) Fetch

(c) Match

Figure 6: Reinhardt datapath components and resubmitting

3.4 Memory and Input queue
Memory: The memory manages cell configurations and their state
transitions of the core. By exploiting dynamic updatability, Rein-
hardt can store multiple Reinhardt logic for the core (i.e., cell con-
figurations) into the memory with an ID and fetch one of them to
the core instantly, enabling seamless updates. Instead of modifying
the logic on the core directly (certainly, it is also allowed), new
Reinhardt logic for new patterns is first stored into the memory
and swapped entirely with the currently active logic in the core.
It ensures full availability of zero delays in updating and allows
regex patterns to be provided by switching them per group (i.e.,
different IDs on the memory) for each observation string, e.g., regex
for HTTP or regex for malware.

Multiple queues and cores: To process an observation string
with NFA of Reinhardt logic, each character in the string has to be
sequentially entered in Reinhardt. However, this procedure delays
the next observation strings until the observation string currently
being processed is finished, causing the throughput degradation.
To improve the throughput, as seen in Figure 6, we design the input
queue to n multiple queues and the Reinhardt core to be also multi-
layered, mapping one to one to each queue. Therefore, multiple
packets can be processed concurrently, and the throughput can
increase as much as the number of the queues and cores n increases.
However, as more queues and cores proportionally require more
FPGA resource in implementation, it is important to find the optimal
number n. It is covered in Evaluation (§5).

By combining the two features of the memory fetching and
multiple queueing, Reinhardt can process an observation string
multiple times with different regex patterns back-to-back [57]. Fig-
ure 6 shows the steps of this resubmitting feature. Step (a) involves
the requesting of a memory ID set to match. Next, the logic from
the memory ID is fetched and deployed onto the Reinhardt core (b),
and (c) shows the actual match of the observation string. The final
step (d) resubmits the observation string into the input queue for
the following pattern of the memory ID, and the process repeats.
This resubmitting allows more regex matching beyond the core size
and establishes a method for hierarchical processing on regex sets.

3.5 Host-FPGA communication
Handling detection: If any matched pattern is found (i.e., a state
transition reaches the accept-signal), the Reinhardt datapath sends a
notification message to the event listener in the host. The message

contains the row number and active memory ID of the core to
indicate which pattern is matched. The received notification is
delivered to applications that register the event handler at the event
listener to follow up on the received matching result. For example,
we can implement an automated system that blocks malicious IP
addresses from matching results.

Datapath configuration: The host configures the Reinhardt
datapath through two APIs mainly, 1) setCell(ID, x, y, args), which
configures each cell, and 2) setFetch(ID1, ID2), which specifies mem-
ory IDs used for matching; 1) setCell() takes thememory ID to store
this cell configuration, cell coordinate, and argument to designate a
cell instruction. If a ‘x’ is set to zero indicating the input cells, its
argument needs a target substring of regex, otherwise the argument
needs signal directions, e.g., ‘t→b’meaning a signal from the top is
forwarded to the bottom. Reinhardt logic derived from Algorithm 1
is also deployed into the Reinhardt datapath by repeatedly calling
this setCell() for each cell. 2) setFetch() takes preceding ID and fol-
lowing ID for resubmitting, e.g., if ID 10 should be performed after
ID 5, set as setFetch(5, 10). There are also constant IDs to denote
first/last rounds, ‘INIT’ and ‘LAST’, e.g., setFetch(INIT, 5) means
the memory that is fetched first when matching starts is 5, and
setFetch(10, LAST) means ID 10 is the last one for the matching.

4 IMPLEMENTATION
To validate Reinhardt’s design, we implemented a prototype using
NetFPGA-SUME, an FPGA-based PCI Express board with Xilinx
Virtex-7 XC7V690T and four SFP+ 10 Gbps interfaces [52, 85], and
it processes packets in chunks of 256-bit at 160 MHz. We also im-
plemented a device driver based on the NetFPGA-SUME reference
driver [53] to handle the prototype with the APIs.

In terms of the Reinhardt core configuration, there are four con-
straints to determine the core size: 1) the number of input queues
n which is related to the overall throughput, 2) the core width w
which determines the complexity of regex patterns, 3) the core
height h which indicates the capacity of regex patterns, and 4)
the length of input cellsm which specifies the maximum length
of substrings in regex patterns. While the higher number shows
better performance and capacity, we need to carefully determine
the constraints of the Reinhardt core within the limited hardware
resource. To set the constraints, we collected 2,735 regexes from
Snort 2.9.7 default (648), Snort 2.9 (645) and 3.0 (524) community,
and Suricata 4.1.2 default (918) rulesets, and draw the constraints
that can express 90% of regex forms and accommodate as many pat-
terns as possible with Reinhardt. Please note that these constraints
are statistically specified values to represent generic patterns, and
they can vary depending on requirements.

Core width: The width of the core (w) determines how many
metacharacters in a single regex pattern Reinhardt can support.
Thus, we examine the number of metacharacters in all of the given
regex patterns, and Figure 7a shows its frequency distribution in
the regex patterns. From the result, when w = 24, Reinhardt can
cover 90% of regex patterns regardless of the ruleset choice.

Length of input cells: The length of the input cell (m) specifies
the maximum length of a substring in a single regex pattern. If the
defined length is insufficient to cover each substring, the substrings
are concatenated into multiple cells, wasting the core space. To find

Reinhardt: Real-time Reconfigurable Hardware Architecture for Regular Expression Matching in DPI ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Metacharacter (ea)
0 8 16 24 32 40 48

C
D

F
0.
2

0.
4

0.
6

0.
8
0.
9
1

Snort2.9.7
Snort-COMM2.9
Snort-COMM3
Suricata4.1.2

Metacharacter (ea)
0 8 16 24 32 40 48

C
D

F
0.
2

0.
4

0.
6

0.
8
0.
9
1

Snort2.9.7
Snort-COMM2.9
Snort-COMM3
Suricata4.1.2

Metacharacter (ea)
0 8 16 24 32 40 48

C
D

F
0.
2

0.
4

0.
6

0.
8
0.
9
1

Snort2.9.7
Snort-COMM2.9
Snort-COMM3
Suricata4.1.2

Metacharacter (ea)
0 8 16 24 32 40 48

C
D

F
0.
2

0.
4

0.
6

0.
8
0.
9
1

Snort2.9.7
Snort-COMM2.9
Snort-COMM3
Suricata4.1.2

(a) Metacharacters

String Length
4 8 9 12 16 20 24

C
D

F
0.
2

0.
4

0.
6

0.
8
0.
9
1

Snort2.9.7
Snort-COMM2.9
Snort-COMM3
Suricata4.1.2

String Length
4 8 9 12 16 20 24

C
D

F
0.
2

0.
4

0.
6

0.
8
0.
9
1

Snort2.9.7
Snort-COMM2.9
Snort-COMM3
Suricata4.1.2

Metacharacter (ea)
0 8 16 24 32 40 48

C
D

F
0.
2

0.
4

0.
6

0.
8
0.
9
1

Snort2.9.7
Snort-COMM2.9
Snort-COMM3
Suricata4.1.2

Metacharacter (ea)
0 8 16 24 32 40 48

C
D

F
0.
2

0.
4

0.
6

0.
8
0.
9
1

Snort2.9.7
Snort-COMM2.9
Snort-COMM3
Suricata4.1.2

(b) Sub-string length
Figure 7: Frequency statistics of regex patterns

Packet size (bytes)
64 256 512 1024 1514

Th
ro

ug
hp

ut
 (G

bp
s)

2
4

6
8

10

Packet size (bytes)
64128256 512 1024 1514

Th
ro

ug
hp

ut
 (G

bp
s)

2
4

6
8

10
11

NIC Q1 Q2 Q4
Q7 Q8 Q12

128

(a) Throughput
Latency (usec)

45 50 55 60 65

C
D

F
0.
2
0.
4
0.
6
0.
8

1

NIC
Q1
Q2
Q4
Q7
Q8
Q12

(b) Latency (RTT)

Figure 8: Performance variations by number of queues n

an optimal length, we examine the distribution of the lengths of
substrings in the given regex patterns. As shown in Figure 7b, 90%
of the substrings have up to 9 characters, i.e.,m = 9.

Coreheight and thenumber of queues:While the constraints
mentioned above are determined based on the given regex patterns,
the height of the Reinhardt core h and the number of queues n are
dependent on how many resources in FPGA (i.e., LUTs) are utilized.

As a result, we implement four Reinhardt datapaths with dif-
ferent core size as 24×160×8, 24×300×4, 24×665×2 and 24×1580×1
(Widthw × Height h× Queues n) withm = 9 with about 90% of the
resources in NetFPGA-SUME. We will address which combination
leads to the optimal performance of Reinhardt in the evaluations.

5 EVALUATION
5.1 Performance Measurement
We measure the throughput and latency variations of Reinhardt to
see how many queues are required to get the line-rate performance
(i.e., 10 Gbps) and to see the performance degradations due to
resubmissions. For this, we use three machines with an Intel Xeon
E5-2630 CPU, 64 GB, and Intel X520 10GbE NICs. We install a
NetFPGA-SUME FPGA board on one of them, and the other two are
used as a packet generator and its receiver using Intel DPDK-Pktgen
[35] and nping [55] for throughput and latency measurements,
respectively. As criteria, we also measure the performance of a
direct connection between the hosts without Reinhardt.

Performance by number of queues: Figure 8a shows the
throughput variations of Reinhardt under the different number
of queues. The throughput with a single queue is from 1.68 to 1.28
Gbps, but as the number of queues increases, the overall throughput
increases, achieving the line-rate starting from eight queues.

This required number of queues to achieve 10 Gbps can be proved
arithmetically. We have implemented Reinhardt to process a packet
in chunks of 256-bit (32 characters), resulting in the delay of 32
clocks per chunk, and this delay is always constant regardless of
the Reinhardt core size. Since the clock rate of NetFPGA-SUME is
160 MHz, 1 clock takes 6.25 ns, i.e., the delay of 32 clocks takes 200

Packet size (bytes)
64 256 512 1024 1514

Th
ro

ug
hp

ut
 (G

bp
s)

2
4

6
8

10

NIC S1 S2
S4 S5 S6
S8

128
(a) Throughput

Latency (usec)
45 50 55 60 65

C
D

F
0.
2
0.
4
0.
6
0.
8

1

NIC
S1
S2
S4
S5
S6
S8
S32

(b) Latency (RTT)

Figure 9: Performance degradations due to resubmitting

ns. For processing 256-bit chunks at 10 Gbps speed, each chunk
must be processed within 25.6 ns. As a result, the required number
of queues can be calculated through 200/25.6 = 7.81, i.e., 8.

Theoretically, the processing time of Reinhardt takes 32 clocks of
delay, so there should bemore latency in Reinhardt compared to NIC
connections. However, Figure 8b shows that latencies of Reinhardt
are in very close proximity to the latency of the NIC connections
regardless of the number of queues because the latency increase is
a negligible amount in the unit of nanoseconds, whereas the unit
of latency in the figure is microseconds. By using Reinhardt, packet
transmission can be guaranteed with a latency of 60 µs, regardless
of the number of queues.

Performance degradations by resubmitting: We measure
the throughput and latency variations of Reinhardt to see the de-
gree of performance degradations under the different number of
resubmissions. For this, we configure Reinhardt with eight queues.
As shown in Figure 9a, the throughputs with up to 4 times submis-
sions are steady. However, as the number of submissions increases,
20% of throughput degradations occur every resubmission. Latency
is slightly different, but most of them fall within the error range
of measurement and are still under 60 µs because there is a delay
of only about 200 ns per round, so even if 4 resubmits occur, the
delay is less than 1 µs. As the number of submissions increases, the
delay gradually accumulates; 32 resubmissions increase the overall
latency by about 6-8 µs.

These results are because the dynamic configurability can utilize
potential resources in FPGA; NetFPGA-SUME processes a packet
with 256-bit chunks per clock, but it takes 25.6 ns to get a 256-bit
chunk at the 10 Gbps speed, which is about 4 clocks at 160 MHz.
Thus, the chunks of incoming packets are processed every 4 clocks
and make the gap of 3 clocks during queue entry. This gap is utilized
for the chunks of resubmitted packets, so the submissions up to 4
times will not suffer throughput degradation.

5.2 Regex Pattern Deployment
Pattern capacity: Pattern capacity means how many regex pat-
terns Reinhardt can accommodate at once without performance
loss. However, it is difficult to make universal claims since Rein-
hardt aims at the dynamic configuration for various regex patterns
rather than fixed regex patterns, and the complexity of the patterns
varies the number of patterns. Thus, we randomly select regex pat-
terns among the regex set used to determine the core constraints
in §4 until the core becomes full, including the four resubmitting.
The experiment was repeated 100 times; Figure 10 describes the
number of deployed regex patterns for the different core sizes into
a candlestick graph of the body as the range of standard deviations

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Taejune Park, Jaehyun Nam, Seung Ho Na, Jaewoong Chung, and Seungwon Shin

300

450

600

750

900

(A) (B) (C) (D) (A) (B) (C) (D)

584
590

465

501 469

317
358

591 588

469

798

1000

1100

1200

1300

1400

(E)
(1) (2) (3) (4) (1) (2) (3) (4) (5)

24 x 665 x 2
(2.7 Gbps)

24 x 1580 x 1
(1.4 Gbps)

1313

1196

1400 1300 1200 1100 100030
0

 4
50

60

0
 7

50

90
0

0

100

200

300

400

(A) (B) (C) (D) (A) (B) (C) (D)
(1) (2) (3) (4) (1) (2) (3) (4)

24x160x8
(10 Gbps)

24 x 300 x 4
(5.6 Gbps)

160

126 102

137
114

143

69

100

245

295

202

243
220

260

138

172

0
 1

00

 2
00

30

0
 4

00
N

um
be

r o
f R

ul
es

 (e
a)

Pattern capacity by Reinhardt core size

(1) Snort 2.9.7 default (648 ea) (2) Snort 2.9 community (645 ea)
(3) Snort 3.0 community (524 ea) (4) Suricata 4.1 default (918 ea)

(5) Aggregated patterns to check maximum capacity
⋆ Core size: Width × Height × Queues, Submission 4 times

Figure 10: Pattern capacities with the different core sizes

Core sizew×h×n # of the cells # of patterns Time (sec)
24×160×8 15,360 ≤ 160 0.116
24× 300×4 28,800 ≤ 295 0.186
24×665×2 63,840 ≤ 590 0.403
24×1580×1 151,680 ≤ 1313 0.965

⋆ The number of the cells to configure considers four submissions
∗ The number of patterns is referenced in Figure 10

Table 3: Reinhardt cell configuration time

around the average and its shadow as a min-max. The number of
deployed patterns increases 160-1313 as the core size increases.

Pattern configuration time: One of the key contributions in
Reinhardt is the dynamic reconfigurability without service inter-
ruption. To show its agility, we measure the pattern configuration
times with the different core sizes. The configuration assumes that a
host software configures all cells in the core, including resubmitting
4 times (i.e., worst-case); Table 3 shows the number of cells being
configured and their configuration times. While these times are
measured under the worst cases, all configurations are completed
within a second. With the consideration of the number of deploy-
able regex patterns shown in Table 10, the configuration time takes
116 ms for 160 patterns and 965 ms for 798 patterns, which is much
faster than the configuration times in existing FPGA-based REM
described in Table 1. The configuration in Reinhardt is mostly spent
in communication between the datapath and software. The update
is instantly performed at the device.

Update response time in NIDS/IPS: To validate how effec-
tively Reinhardt addressed the challenge of FPGA-based DPI, we
back to our motivating example of Figure 2 in §2.3 and perform the
same evaluation with Reinhardt. Figure 11 shows its result. As in-
stalling the new pattern to inspect and filter Flow B, the new pattern
works instantly while the device is up and running as ever. Hence,
unlike the motivating example, Flow A is delivered continuously,
but only Flow B is dropped immediately after updating.

5.3 Comparison with DPDK-Hyperscan
Intel DPDK-Hyperscan [35, 78] is one of the best-of-breed baselines
for fast regex processing running with a multi-core CPU. Here, we
analyze the advantages and disadvantages of Reinhardt through
comparison with DPDK-Hyperscan. We implement a simple DPDK-
Hyperscan application using the Hyperscan open-source [34] and
DpdkBridge [58] that receives packets from network interfaces and

0 1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 10

De
liv

er
ed

 ra
te

1

0

Try pattern update

0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10

Traffic A
Traffic B

Drop by
the pattern

Time (sec)
Figure 11: Update response time of the Simple IPSwith Rein-
hardt (See with Figure 2 in §2.3)

Packet size (bytes)
64 256 512 1024 1514

Th
ro

ug
hp

ut
 (G

bp
s)

2
4

6
8

10

Rein. H.S.1
H.S.2 H.S.4
H.S.8

128

(a) Simple patterns
Packet size (bytes)

64 256 512 1024 1514

Th
ro

ug
hp

ut
 (G

bp
s)

2
4

6
8

10

Rein. H.S.1
H.S.2 H.S.4
H.S.8

128

(b) Complex patterns
⋆ The core size of Reinhardt is 24×160×8 // H.S.n means Hyperscan with n cores
∗ Simple and complex patterns contain 1.6 and 7.6 metacharacters on average.

Figure 12: Throughput for 100 patterns (vs Hyperscan)

Packet size (bytes)
64 256 512 1024 1514

Th
ro

ug
hp

ut
 (G

bp
s)

2
4

6
8

10
11

Rein. H.S.1
H.S.2 H.S.4
H.S.8

64 256 512 1024 1514

2
4

5

H.S.1 H.S.2
H.S.4 H.S.8

64 256 512 1024 1514

2
4

5

24x160x8 24x300x4
24x665x2 24x1580x1

64 256 512 1024 1514

Th
ro

ug
hp

ut
 (G

bp
s)

2
4

6
8

10
11

(a
) R

ei
nh

ar
dt

(b
) D

PD
K-

H
yp

er
sc

an

128

Figure 13: Throughput
for 843 patterns
(vs Hyperscan)

Latency (usec)
50 60 70 80 90 100

C
D

F
0.
2

0.
4

0.
6

0.
8

1

Rein.100S
Rein.100C
Rein.843
H.S.100S
H.S.100C
H.S.843

⋆ The core size of Reinhardt is 24×160×8
Figure 14: Latency (RTT)
for 100 and 843 patterns

(vs Hyperscan)

matches them to target patterns. It also runs on Intel Xeon E5-2630
(10 cores, Hyper-Threading disabled), 64 GB of RAM and Intel X520
10GbE NICs. The target patterns used 843 compatible to Reinhardt
of 847 pcres from Intel’s sample data [36].

Throughput in capacity: To compare performance within the
Reinhardt capacity, we randomly select 100 regex patterns among
the 843 patterns into simple and complex cases respectively and
measure processing throughputs with Reinhardt 24×160×8 and
DPDK-Hyperscan, respectively. We repeat 20 times, and Figure 12
shows its average values; Reinhardt constantly achieves 10 Gbps
regardless of complexity, while DPDK-Hyperscan not only shows
performance degradation according to packet size and pattern com-
plexity. Four cores for simple patterns and eight for complex pat-
terns are required to extract the maximum performance with DPDK-
Hyperscan, but performance degradation is still observed in the
cases of 64-256 bytes packets, and overall throughput is up to 9.3
Gbps, slightly below the line rate (i.e., 10 Gbps).

Reinhardt: Real-time Reconfigurable Hardware Architecture for Regular Expression Matching in DPI ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Throughput in excess of capacity: To measure performance
on a larger pattern set, we deploy all 843 patterns into each different
size of Reinhardt, taking into account the excess of the number of
resubmissions ensuring maximum speed (i.e., 4 times); Each core
24×160×8, 24×300×4, 24×665×2 and 24×1580×1 can accommodate
all patterns by taking total 19, 10, 5 and 2 submission rounds re-
spectively. Figure 13 presents their throughput averages for 20
iterations; Reinhardt with the core sizes 24×160×8 and 24×300×4
suffers significant performance degradation from 10 / 5.6 Gbps to
0.37 / 1.5 Gbps respectively due to processing delay from too many
resubmissions. On the other hand, since the core 24×665×2 and
24×1580×1 can handle all patterns within the capacity or with only
one more submission, they almost preserve the original through-
put. While Reinhardt shows the similar performance of Hyperscan
with 1-4 cores, Hyperscan can perform well with more cores (e.g.,
Hyperscan approaches 4.5 Gbps with 8 cores).

Latency: We compare the latencies of Reinhardt and the DPDK
version of Hyperscan while handling 100 simple/complex patterns
and 843 patterns. As seen in Figure 14, the latency of Reinhardt is
almost similar regardless of the complexity and number of patterns
because the overhead by 19 resubmissions is arithmetically only
about 4 us in Reinhardt, it is reasonable to arrive at similar results
within an error bound of measurement. In DPDK-Hyperscan, its
latency is slower to 50% as the complexity and number of patterns
increase, and the variation (i.e., jitter) becomes wide.

Discussion: This evaluation shows that Reinhardt guarantees
line-rate throughput within the capacity, and if overloaded, there is
a decrease but still provides stable throughput and latency regard-
less of the packet size or patterns. DPDK-Hyperscan also achieves
outstanding throughput, moreover, obtains better than Reinhardt
when processing a large number of regex as utilizing many CPU
cores. However, its throughput and latency are fairly affected by
regex complexity and the packet size.

Furthermore, while DPDK-Hyperscan should consume lots of
host resources, the matching process of Reinhardt runs standalone
on hardware. Hence, we expect that the rest of the resources can
be leveraged to facilitate extra services to reduce operating costs as
Microsoft’s AccelNet suggested [23].

6 CASE STUDY: NIDS AND SNORT
ACCELERATION

To understand how real-world networks benefit from Reinhardt,
we implement two security systems applying Reinhardt; NIDS/IPS
and PCRE replacement in Snort IDS.

6.1 NIDS/IPS using Reinhardt
Experiment setup: Figure 15 shows the extensions for Reinhardt
as NIDS/IPS. Signatures are parsed into headers in the 5-tuple
lookup table and corresponding patterns (i.e., the “content” and
the “pcre”) are converted to Reinhardt logics in the memory. Here,
header and pattern pairs are placed in the same memory ID to
consider resubmitting, and the IDs of the corresponding area are
assigned to each header. When packets arrive, Reinhardt fetches the
matching logic from the memory to the Reinhardt core, and the core
performs the inspection. When Reinhardt finds any matches, the

21,22,23
31,32, …

…

Memory ID
10

……
AlertAny

IP_10.0.0.1 Drop

Action
tcp_22
Header

Alert

R
ei

nh
ar

dt

So
ftw

ar
e

Al
er

t Redirect

Drop

Fwd.

Five-tuple Header Parser Pattern Converter
(Content / PCRE)

Signature (e.g., alert tcp any any -> $HOME any (content:"aaa"; pcre:”[a-z]+”;))

Memory

Input Queue

Lookup

F
et
ch

Policy handler
Reinhardt Core

Listener

R
ei

nh
ar

dt

H
ar

dw
ar

e

Lookup Table

Pkt.

Figure 15: NIDS/NIPS using Reinhardt

Header IDs
1 6 11 16 22 27 32 38 47 55 63

15
282 96

38
5

640

400
200

2500

4000

R
ei

nh
ar

dt
 ‘h

ei
gh

t’
us

ag
e

Used for content (Plain text)
Used for prce (Regex)

Figure 16: The core ‘height’ usage distribution by headers

policy handler follows the predefined action; alert, drop or redirect
the packet to alternative routes (e.g., honeypot).

Rule coverage evaluation: To measure the coverage of Rein-
hardt NIDS/IPS, we try to deploy Snort 2.9.7 default ruleset (6,411
signatures) on Reinhardt NIDS/IPS with the 24 × 160 × 8 core in-
cluding 4 times submissions. As a result, the Reinhardt NIDS/IPS
accepts 75% of the signatures.

For detailed analysis, we measure the core usage of patterns by
the occupied heights per each header (Figure 16). The signatures
require a total of 9,510 core heights and it far exceeds the capacity
of Reinhardt even considering resubmitting (i.e., 160 × 4 = 640).
However, they are distributed across 385 headers, and the aver-
age height usage for each header is only 138. That is, Reinhardt
could accommodate all signatures, except two exceeding headers 1
and 2, by swapping the activated patterns on incoming packets by
exploiting the fast-dynamic configurability of Reinhardt.

The two huge headers requiring 3,885 and 2,767 heights, re-
spectively, are general rules for HTTP and SQL, so a lot of similar
patterns were indiscreetly stacked from different signatures. While
we omit details about it in this paper since signature optimization
is beyond the scope of this paper, we could reduce their usage up to
50% by merging duplicates and manually optimizing the patterns.
As a result, the Reinhardt NIDS/IPS could accept more signatures
to 87%. We expect to accommodate all signatures if they are cate-
gorized in a more fine-grained fashion.

Performance evaluation: The performance of the Reinhardt
NIDS/IPS is equal to the naive Reinhardt we measured in §5 (i.e.,
10 Gbps). In fact, some delays are added to search the lookup table,
but this delay is only a few nanoseconds that are virtually hard to
measure on the source and destination hosts.

Implication: This result demonstrates that Reinhardt can ef-
fectively work as a high-performance NIDS/IPS. An important im-
plication is that the real-time updatability of Reinhardt allows the
patterns to be dynamically loaded on the core at the appropriate
time so that the total number of active signatures can be much

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Taejune Park, Jaehyun Nam, Seung Ho Na, Jaewoong Chung, and Seungwon Shin

PCRE?

Host Software

Matching Rule PCRE Engine ResultPkt.

Rule Parser

Signature (e.g., alert tcp any any -> $HOME any (content:"aaa"; pcre:”[a-z]+”;))

Pkt.

Copy Pkt.
Result

 Reinhardt

Hardware

Matching…

Regex patterns
in Reinhardt logic

Figure 17: Snort IDS with Reinhardt-based REM

7.6G7.6G 7.6G 7.6G
7.2G

6.8G

4.3G 4.3G

3.0G 3.0G

x28 x65

x61 x5028

153M

67.2M 49.0M 0.6M

∗ Simple and complex regex patterns contain 1.6 and 7.6 metacharacters on average.

Figure 18: Performance comparison for Snort acceleration

greater than the capacity of the core. Therefore, if signatures are
well established on each header, Reinhardt NIDS/IPS can accept the
comparable amount of patterns as software. This advanced feature
is difficult to perform with previous FPGA-based REM.

6.2 PCRE Replacement in Snort IDS
In §2.1, we have presented the performance of software-based REM
by borrowing Snort IDS. Here, we present Reinhardt as the replace-
ment of the PCRE engine to accelerate the performance.

Experiment setup: Figure 17 shows the overall design of Snort
IDS with Reinhardt. We have modified Snort IDS to copy packets to
Reinhardt to perform matching on Reinhardt instead of the PCRE
engine. A matching result is replaced to take from Reinhardt, not
the PCRE engine. Regex patterns in signatures (i.e., the pcre option)
are parsed into Reinhardt logic and stored in Reinhardt.

Performance evaluation: Figure 18 shows the performance
variations of Snort IDS with Reinhardt. Here, the test environment
is the same as that of the PCRE throughput benchmark (described
in §2.1). One of the conspicuous results is that Reinhardt provides
stable performance (i.e., 7.6, 4.3, and 3.0 Gbps) regardless of the
complexity of regex patterns, unlike the PCRE engine. Unfortu-
nately, there are gradual throughput degradations from 7.6 Gbps to
3.0 Gbps as the number of rules increases from 1 to 100, but these
throughput degradations mostly come from the hidden overheads
in Snort IDS, which are the iterations to check the existences of
other rule options (e.g., offset, distance, and within options) for each
rule. Therefore, we believe that if the Snort internal procedure can
be optimized in consideration of Reinhardt, this degradation can be
eliminated. The latency improvement is remarkable. Even if there is
slight overhead due to packet copying from software to hardware,
it is below a few us negligible at this latency scale of Snort IDS.

Compared to those with the original PCRE engine, the overall
throughput with Reinhardt is significantly improved up to x5,028.
Even though we ignore 0.6 Mbps on the PCRE engine of 100/Com-
plex, there is a significant performance improvement of up to x65.

Implication: This case study is a kind of hardware acceleration
for REM, and it is possible because Reinhardt can immediately re-
flect software changes. Considering previous FPGA-based matching
solutions that only support fixed patterns or take a long time to
change, Reinhardt first presents how FPGA can be used as a hard-
ware accelerator for REM; Acceleration for Snort has been usually
with GPU [6, 43, 45, 75, 76] owing to its efficient programmability
in deploying patterns. However, it should involve critical overhead
for copying packet payload from network interfaces to CPU and
from CPU to GPU, and for scheduling between the GPU cores
[12, 15, 16, 24, 70]. Reinhardt, however, works in bump-in-the-wire,
so that has much less loss in performance, particularly latency.

7 RELATEDWORK
FPGA-based REM: Sidhu et al. [62] proposed a one-hot encod-
ing scheme to express NFA with circuit blocks, and its subsequent
studies [30, 44] inspire Reinhardt. Some studies [29, 51, 77] sug-
gested resource efficient regex circuits. Other studies [48, 50, 80, 81]
focused on high-performance FPGA-based REM.

Configurable FPGA-based REM: One strategy is generating
FPGA source codes (i.e. HDL) from regex patterns automatically
[9, 48, 65]. However, compiling the generated HDL cores to FPGA
remains and is far from real-time configurability. Memory-based
approaches can be configurable [8, 11, 68], and Sidler et al. [63] pro-
posed CPU-FPGA hybrid approach. However, as they are memory-
intensive, they should work in sequential processing and cannot
fully support massive parallel processing, i.e., less performance than
circuit-based ones [10, 83]. Also, in security aspects, they cannot
support constraint repetitions (i.e., *, +), so it is difficult to handle a
signature including such NOP sleds often prepended before a shell-
code in remote exploit payloads to make an attack more reliable
[10, 83]. To the best of our knowledge, Reinhardt is the first work
that proposes the real-time reconfigurable REM on FPGA [79].

Programmable-dataplane-based REM: P4 allows a limited
syntax in pattern matching. For example, DeepMatch [31] and
Jepsen et al [37] proposed a way of pattern matching with P4.
However, while supporting string matching and glob patterns, they
do not allow frequently used syntax (e.g., {m,n}, [^], and [a-f]).
Whereas, Reinhardt is specialized in pattern matching, supporting
the full regex matching syntax.

8 CONCLUSION
FPGA-based REM satisfies high-performance, but flexibility is a
significant limitation as it involves a time-consuming process to
update patterns. To address this, we have presented Reinhardt, an
improved hardware architecture of implementing regex with its
reconfigurable cells to support dynamic updates. Our evaluation and
case studies demonstrate that Reinhardt updates patterns promptly
without service interruption and serves well as a high-performance
NIDS/IPS and hardware acceleration for REM. We believe that
Reinhardt can be positioned as an advanced DPI that is adept at
responding to frequent changes and can also be implemented as a
specialized regex processor (e.g., ASIC) in the future.

Reinhardt: Real-time Reconfigurable Hardware Architecture for Regular Expression Matching in DPI ACSAC ’21, December 6–10, 2021, Virtual Event, USA

ACKNOWLEDGMENTS
This research was supported by the Engineering Research Center
Program through the National Research Foundation of Korea (NRF)
funded by the Korean GovernmentMSIT (NRF-2018R1A5A1059921).

REFERENCES
[1] 2021. CVE Detail. https://www.cvedetails.com.
[2] 2021. Titan IC RXP. https://www.mellanox.com/titan-ic.
[3] Mohammad Aazam and Eui-Nam Huh. 2015. E-HAMC: Leveraging Fog comput-

ing for emergency alert service. In 2015 IEEE International Conference on Pervasive
Computing and Communication Workshops (PerCom Workshops). IEEE, 518–523.

[4] Tamer AbuHmed, Abedelaziz Mohaisen, and DaeHun Nyang. 2008. A sur-
vey on deep packet inspection for intrusion detection systems. arXiv preprint
arXiv:0803.0037 (2008).

[5] Patrick Kwadwo Agyapong, Mikio Iwamura, Dirk Staehle, Wolfgang Kiess, and
Anass Benjebbour. 2014. Design considerations for a 5G network architecture.
IEEE Communications Magazine 52, 11 (2014), 65–75.

[6] Igor M Araújo, Carlos Natalino, Ádamo L Santana, and Diego L Cardoso. 2018.
Accelerating VNF-based Deep Packet Inspection with the use of GPUs. In 2018
20th International Conference on Transparent Optical Networks (ICTON). IEEE,
1–4.

[7] Kubilay Atasu, Raphael Polig, Jonathan Rohrer, and Christoph Hagleitner. 2013.
Exploring the design space of programmable regular expression matching accel-
erators. Journal of Systems Architecture 59, 10 (2013), 1184–1196.

[8] Zachary K Baker, Hong-Jip Jung, and Viktor K Prasanna. 2006. Regular expres-
sion software deceleration for intrusion detection systems. In 2006 International
Conference on Field Programmable Logic and Applications. IEEE, 1–8.

[9] Joao Bispo, Ioannis Sourdis, Joao MP Cardoso, and Stamatis Vassiliadis. 2006.
Regular expression matching for reconfigurable packet inspection. In Field Pro-
grammable Technology, 2006. FPT 2006. IEEE International Conference on. IEEE,
119–126.

[10] Joao Bispo, Ioannis Sourdis, Joao MP Cardoso, and Stamatis Vassiliadis. 2007.
Synthesis of regular expressions targeting fpgas: Current status and open issues.
In International Workshop on Applied Reconfigurable Computing. Springer, 179–
190.

[11] Benjamin C Brodie, David E Taylor, and Ron K Cytron. 2006. A scalable ar-
chitecture for high-throughput regular-expression pattern matching. In 33rd
International Symposium on Computer Architecture (ISCA’06). IEEE, 191–202.

[12] Shuai Che, Jie Li, JeremyW Sheaffer, Kevin Skadron, and John Lach. 2008. Acceler-
ating compute-intensive applications with GPUs and FPGAs. In 2008 Symposium
on Application Specific Processors. IEEE, 101–107.

[13] Check Point Software Technologies Ltd. 2019. How quick are turn-
around times for IPS signature updates addressing newly found vulnerabili-
ties. https://supportcenter.checkpoint.com/supportcenter/portal?eventSubmit_
doGoviewsolutiondetails=&solutionid=sk98937.

[14] Hao Chen, Yu Chen, and Douglas H Summerville. 2010. A survey on the applica-
tion of FPGAs for network infrastructure security. IEEE Communications Surveys
& Tutorials 13, 4 (2010), 541–561.

[15] Jason Cong, Zhenman Fang, Michael Lo, Hanrui Wang, Jingxian Xu, and Shao-
chong Zhang. 2018. Understanding performance differences of FPGAs and GPUs.
In 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 93–96.

[16] Ben Cope, Peter YK Cheung, Wayne Luk, and Lee Howes. 2010. Performance
comparison of graphics processors to reconfigurable logic: A case study. IEEE
Transactions on computers 59, 4 (2010), 433–448.

[17] CORSA. 2019. Is Your Network Security Keeping Up? https://www.corsa.com/wp-
content/uploads/PDFs/Corsa_WP-Is_Your_Network_Security_Keeping_Up.
pdf.

[18] Emerging Threats. 2021. Emerging Threats Rulesets. https://rules.
emergingthreats.net, https://doc.emergingthreats.net.

[19] GSMECIEG ETSI. 2015. 004, Mobile Edge Computing (MEC) Service Scenarios
V1. 1.1,(2015).

[20] Gilberto Fernandes, Joel JPC Rodrigues, Luiz Fernando Carvalho, Jalal F Al-
Muhtadi, and Mario Lemes Proença. 2019. A comprehensive survey on network
anomaly detection. Telecommunication Systems 70, 3 (2019), 447–489.

[21] FierceWireless. 2019. Deep Packet Inspection: Getting the Most Out of
5G. https://www.fiercewireless.com/sponsored/deep-packet-inspection-getting-
most-out-5g.

[22] FireEye. 2021. FireEye Dynamic Threat Intelligence Cloud. https://www.
threatprotectworks.com/Dynamic-Threat-Intelligence-cloud.asp.

[23] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. 2018. Azure Accelerated Networking: SmartNICs in the Public Cloud.
In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), Renton, WA.

[24] Jeremy Fowers, Greg Brown, Patrick Cooke, and Greg Stitt. 2012. A performance
and energy comparison of FPGAs, GPUs, and multicores for sliding-window
applications. In Proceedings of the ACM/SIGDA international symposium on Field
Programmable Gate Arrays. ACM, 47–56.

[25] Thilan Ganegedara, Yi-Hua E Yang, and Viktor K Prasanna. 2010. Automation
framework for large-scale regular expression matching on FPGA. In 2010 Inter-
national Conference on Field Programmable Logic and Applications. IEEE, 50–55.

[26] Melvin B Greer Jr and John W Ngo. 2012. Personal emergency preparedness
plan (pepp) facebook app: Using cloud computing, mobile technology, and social
networking services to decompress traditional channels of communication during
emergencies and disasters. In 2012 IEEE Ninth International Conference on Services
Computing. IEEE, 494–498.

[27] PK Gupta. 2016. Accelerating datacenter workloads. In 26th International Confer-
ence on Field Programmable Logic and Applications (FPL).

[28] Philip Hazel. 2005. Pcre: Perl compatible regular expressions. Online
http://www.pcre.org (2005).

[29] Tran Trung Hieu, Tran Ngoc Thinh, and Shigenori Tomiyama. 2013. ENREM:
An efficient NFA-based regular expression matching engine on reconfigurable
hardware for NIDS. Journal of Systems Architecture 59, 4-5 (2013), 202–212.

[30] Brad L Hutchings, Rob Franklin, and Daniel Carver. 2002. Assisting network
intrusion detection with reconfigurable hardware. In Field-Programmable Custom
Computing Machines, 2002. Proceedings. 10th Annual IEEE Symposium on. IEEE,
111–120.

[31] Joel Hypolite, John Sonchack, Shlomo Hershkop, Nathan Dautenhahn, André
DeHon, and Jonathan M Smith. 2020. DeepMatch: practical deep packet in-
spection in the data plane using network processors. In Proceedings of the 16th
International Conference on emerging Networking EXperiments and Technologies.
336–350.

[32] Jonghwan Hyun, Jian Li, ChaeTae Im, Jae-Hyoung Yoo, and James Won-Ki Hong.
2014. A VoLTE traffic classification method in LTE network. In The 16th Asia-
Pacific Network Operations and Management Symposium. IEEE, 1–6.

[33] InfoSecurity. 2019. Advanced Malware Detection - Signatures vs. Behavior
Analysis. https://www.infosecurity-magazine.com/opinions/malware-detection-
signatures/.

[34] Intel. 2019. Hyperscan. https://github.com/intel/hyperscan.
[35] Intel. 2021. Intel DPDK: Data Plane Development Kit. http://dpdk.org.
[36] Intel 01.org. 2019. Hyperscan sample data. https://01.org/downloads/sample-

data-hyperscan-hsbench-performance-measurement.
[37] Theo Jepsen, Daniel Alvarez, Nate Foster, Changhoon Kim, Jeongkeun Lee, Ma-

soudMoshref, and Robert Soulé. 2019. Fast string searching on pisa. In Proceedings
of the 2019 ACM Symposium on SDN Research. 21–28.

[38] Adam Johnson and Kenneth Mackenzie. 2001. Pattern matching in reconfigurable
logic for packet classification. In Proceedings of the 2001 international conference
on Compilers, architecture, and synthesis for embedded systems. ACM, 126–130.

[39] Sailesh Kumar. 2007. Survey of current network intrusion detection techniques.
Washington Univ. in St. Louis (2007), 1–18.

[40] Christopher Lavin, Brent Nelson, and Brad Hutchings. 2013. Impact of hard
macro size on FPGA clock rate and place/route time. In 2013 23rd International
Conference on Field programmable Logic and Applications. IEEE, 1–6.

[41] Christopher Lavin,Marc Padilla, Jaren Lamprecht, Philip Lundrigan, Brent Nelson,
and Brad Hutchings. 2011. HMFlow: accelerating FPGA compilation with hard
macros for rapid prototyping. In 2011 IEEE 19th Annual International Symposium
on Field-Programmable Custom Computing Machines. IEEE, 117–124.

[42] Bojie Li, Kun Tan, Layong Larry Luo, Yanqing Peng, Renqian Luo, Ningyi Xu,
Yongqiang Xiong, Peng Cheng, and Enhong Chen. 2016. Clicknp: Highly flexible
and high performance network processing with reconfigurable hardware. In
Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 1–14.

[43] Cheng-Hung Lin and Cheng-Hung Hsieh. 2018. A novel hierarchical parallelism
for accelerating NIDS using GPUs. In 2018 IEEE International Conference on
Applied System Invention (ICASI). IEEE, 578–581.

[44] Cheng-Hung Lin, Chih-Tsun Huang, Chang-Ping Jiang, and Shih-Chieh Chang.
2007. Optimization of pattern matching circuits for regular expression on FPGA.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 15, 12 (2007),
1303–1310.

[45] Cheng-Hung Lin, Chen-Hsiung Liu, Lung-Sheng Chien, and Shih-Chieh Chang.
2012. Accelerating pattern matching using a novel parallel algorithm on GPUs.
IEEE Trans. Comput. 62, 10 (2012), 1906–1916.

[46] Andrew Love, Wenwei Zha, and Peter Athanas. 2013. In pursuit of instant
gratification for FPGA design. In 2013 23rd International Conference on Field
programmable Logic and Applications. IEEE, 1–8.

[47] Ning Lu, Nan Cheng, Ning Zhang, Xuemin Shen, and Jon W Mark. 2014. Con-
nected vehicles: Solutions and challenges. IEEE internet of things journal 1, 4
(2014), 289–299.

[48] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan. 2007. Compiling pcre to fpga
for accelerating snort ids. In Proceedings of the 3rd ACM/IEEE Symposium on
Architecture for networking and communications systems. ACM, 127–136.

[49] Mitre. 2021. Common Vulnerabilities and Exposures (CVE). https://cve.mitre.org/.

https://www.cvedetails.com
https://www.mellanox.com/titan-ic
https://supportcenter.checkpoint.com/supportcenter/portal?eventSubmit_doGoviewsolutiondetails=&solutionid=sk98937
https://supportcenter.checkpoint.com/supportcenter/portal?eventSubmit_doGoviewsolutiondetails=&solutionid=sk98937
https://www.corsa.com/wp-content/uploads/PDFs/Corsa_WP-Is_Your_Network_Security_Keeping_Up.pdf
https://www.corsa.com/wp-content/uploads/PDFs/Corsa_WP-Is_Your_Network_Security_Keeping_Up.pdf
https://www.corsa.com/wp-content/uploads/PDFs/Corsa_WP-Is_Your_Network_Security_Keeping_Up.pdf
https://rules.emergingthreats.net
https://rules.emergingthreats.net
https://doc.emergingthreats.net
https://www.fiercewireless.com/sponsored/deep-packet-inspection-getting-most-out-5g
https://www.fiercewireless.com/sponsored/deep-packet-inspection-getting-most-out-5g
https://www.threatprotectworks.com/Dynamic-Threat-Intelligence-cloud.asp
https://www.threatprotectworks.com/Dynamic-Threat-Intelligence-cloud.asp
https://www.infosecurity-magazine.com/opinions/malware-detection-signatures/
https://www.infosecurity-magazine.com/opinions/malware-detection-signatures/
https://github.com/intel/hyperscan
http://dpdk.org
https://01.org/downloads/sample-data-hyperscan-hsbench-performance-measurement
https://01.org/downloads/sample-data-hyperscan-hsbench-performance-measurement
https://cve.mitre.org/

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Taejune Park, Jaehyun Nam, Seung Ho Na, Jaewoong Chung, and Seungwon Shin

[50] Hiroki Nakahara, Tsutomu Sasao, and Munehiro Matsuura. 2010. A regular ex-
pression matching circuit based on a modular non-deterministic finite automaton
with multi-character transition. In Proc. 16th Workshop on Synthesis And System
Integration of Mixed Information technologies. 359–364.

[51] Hiroki Nakahara, Tsutomu Sasao, andMunehiroMatsuura. 2012. A designmethod
of a regular expression matching circuit based on decomposed automaton. IEICE
TRANSACTIONS on Information and Systems 95, 2 (2012), 364–373.

[52] NetFPGA. 2014. NetFPGA-SUME board. https://netfpga.org/site/#/systems/
1netfpga-sume/details/.

[53] NetFPGA-SUME. 2020. NetFPGA SUME Reference NIC. https://github.com/
NetFPGA/NetFPGA-SUME-public/wiki/NetFPGA-SUME-Reference-NIC.

[54] Tien-Thinh Nguyen, Christian Bonnet, and Jérôme Harri. 2016. SDN-based
distributed mobility management for 5G networks. In 2016 IEEE Wireless Com-
munications and Networking Conference. IEEE, 1–7.

[55] Nping. 2021. An Open source network packet generation. https://nmap.org/
nping/.

[56] Panos Papadimitratos, Arnaud De La Fortelle, Knut Evenssen, Roberto Brignolo,
and Stefano Cosenza. 2009. Vehicular communication systems: Enabling tech-
nologies, applications, and future outlook on intelligent transportation. IEEE
communications magazine 47, 11 (2009), 84–95.

[57] Taejune Park and Seungwon Shin. 2021. Mobius: Packet re-processing hardware
architecture for rich policy handling on a network processor. Journal of Network
and Systems Management 29, 1 (2021), 1–26.

[58] PcapPlusPlus. 2020. DpdkBridge. https://github.com/seladb/PcapPlusPlus/tree/
master/Examples/DpdkBridge.

[59] Pupuweb. 2019. Deep Packet Inspection (DPI) and 5G: Network Visibility and Real-
time Application Awareness. https://pupuweb.com/dpi-5g-network-visibility-
real-time-application-awareness/.

[60] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, et al. 2014. A reconfigurable fabric for accelerating large-scale
datacenter services. ACM SIGARCH Computer Architecture News 42, 3 (2014),
13–24.

[61] RAPID7. 2017. The Pros & Cons of Intrusion Detection Systems. https://blog.
rapid7.com/2017/01/11/the-pros-cons-of-intrusion-detection-systems/.

[62] Reetinder Sidhu and Viktor K Prasanna. 2001. Fast regular expression matching
using FPGAs. In Field-Programmable Custom Computing Machines, 2001. FCCM’01.
The 9th Annual IEEE Symposium on. IEEE, 227–238.

[63] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. 2017. Accelerat-
ing pattern matching queries in hybrid CPU-FPGA architectures. In Proceedings
of the 2017 ACM International Conference on Management of Data. 403–415.

[64] Snort. 2021. Network Intrusion Detection System. https://www.snort.org/.
[65] Ioannis Sourdis, João Bispo, Joao MP Cardoso, and Stamatis Vassiliadis. 2008.

Regular expression matching in reconfigurable hardware. Journal of Signal
Processing Systems 51, 1 (2008), 99–121.

[66] Suricata. 2021. An open source-based intrusion detection system (IDS). https:
//suricata-ids.org/.

[67] Symantec. 2002. Managing Intrusion Detection Systems in Large Organizations,
Part One. https://www.symantec.com/connect/articles/managing-intrusion-
detection-systems-large-organizations-part-one.

[68] Qiu Tang, Lei Jiang, Xin-xing Liu, and Qiong Dai. 2014. A real-time updatable
FPGA-based architecture for fast regular expression matching. Procedia Computer
Science 31 (2014), 852–859.

[69] Gautam S Thakur, Mukul Sharma, and Ahmed Helmy. 2010. Shield: Social sensing
and help in emergency using mobile devices. In 2010 IEEE Global Telecommunica-
tions Conference GLOBECOM 2010. IEEE, 1–5.

[70] David Barrie Thomas, Lee Howes, and Wayne Luk. 2009. A comparison of
CPUs, GPUs, FPGAs, and massively parallel processor arrays for random number
generation. In Proceedings of the ACM/SIGDA international symposium on Field
programmable gate arrays. ACM, 63–72.

[71] Ken Thompson. 1968. Programming techniques: Regular expression search
algorithm. Commun. ACM 11, 6 (1968), 419–422.

[72] Udaya Tupakula, Vijay Varadharajan, and Naveen Akku. 2011. Intrusion detection
techniques for infrastructure as a service cloud. In 2011 IEEE Ninth International
Conference on Dependable, Autonomic and Secure Computing. IEEE, 744–751.

[73] Elisabeth Uhlemann. 2015. Introducing connected vehicles [connected vehicles].
IEEE Vehicular Technology Magazine 10, 1 (2015), 23–31.

[74] Jan Van Lunteren. 2006. High-performance pattern-matching for intrusion de-
tection. In Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference
on Computer Communications. Citeseer, 1–13.

[75] Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evangelos P
Markatos, and Sotiris Ioannidis. 2008. Gnort: High performance network in-
trusion detection using graphics processors. In International Workshop on Recent
Advances in Intrusion Detection. Springer, 116–134.

[76] Giorgos Vasiliadis, Michalis Polychronakis, Spiros Antonatos, Evangelos P
Markatos, and Sotiris Ioannidis. 2009. Regular expression matching on graphics
hardware for intrusion detection. In International Workshop on Recent Advances
in Intrusion Detection. Springer, 265–283.

[77] Hao Wang, Shi Pu, Gabe Knezek, and Jyh-Charn Liu. 2013. Min-max: A counter-
based algorithm for regular expression matching. IEEE Transactions on Parallel
and Distributed Systems 24, 1 (2013), 92–103.

[78] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Jiayu
Hu, and Heqing Zhu. 2019. Hyperscan: a fast multi-pattern regex matcher for
modern CPUs. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19). 631–648.

[79] Chengcheng Xu, Shuhui Chen, Jinshu Su, Siu-Ming Yiu, and Lucas CK Hui.
2016. A survey on regular expression matching for deep packet inspection:
Applications, algorithms, and hardware platforms. IEEE Communications Surveys
& Tutorials 18, 4 (2016), 2991–3029.

[80] Norio Yamagaki, Reetinder Sidhu, and Satoshi Kamiya. 2008. High-speed regular
expression matching engine using multi-character NFA. In Field Programmable
Logic and Applications, 2008. FPL 2008. International Conference on. IEEE, 131–136.

[81] Yi-Hua Yang and Viktor Prasanna. 2012. High-performance and compact archi-
tecture for regular expression matching on FPGA. IEEE Trans. Comput. 61, 7
(2012), 1013–1025.

[82] Yi-Hua E Yang,Weirong Jiang, and Viktor K Prasanna. 2008. Compact architecture
for high-throughput regular expression matching on FPGA. In Proceedings of the
4th ACM/IEEE Symposium on Architectures for Networking and Communications
Systems. ACM, 30–39.

[83] Yi-Hua E Yang and Viktor K Prasanna. 2011. Space-time tradeoff in regular
expression matching with semi-deterministic finite automata. In 2011 Proceedings
IEEE INFOCOM. IEEE, 1853–1861.

[84] Zeek (Bro). 2021. The Zeek (Bro) Network Security Monitor. https://www.zeek.
org/.

[85] Noa Zilberman, Yury Audzevich, G Adam Covington, and Andrew W Moore.
2014. NetFPGA SUME: Toward 100 Gbps as research commodity. IEEE micro 34,
5 (2014), 32–41.

https://netfpga.org/site/#/systems/1netfpga-sume/details/
https://netfpga.org/site/#/systems/1netfpga-sume/details/
https://github.com/NetFPGA/NetFPGA-SUME-public/wiki/NetFPGA-SUME-Reference-NIC
https://github.com/NetFPGA/NetFPGA-SUME-public/wiki/NetFPGA-SUME-Reference-NIC
https://nmap.org/nping/
https://nmap.org/nping/
https://github.com/seladb/PcapPlusPlus/tree/master/Examples/DpdkBridge
https://github.com/seladb/PcapPlusPlus/tree/master/Examples/DpdkBridge
https://pupuweb.com/dpi-5g-network-visibility-real-time-application-awareness/
https://pupuweb.com/dpi-5g-network-visibility-real-time-application-awareness/
https://blog.rapid7.com/2017/01/11/the-pros-cons-of-intrusion-detection-systems/
https://blog.rapid7.com/2017/01/11/the-pros-cons-of-intrusion-detection-systems/
https://www.snort.org/
https://suricata-ids.org/
https://suricata-ids.org/
https://www.symantec.com/connect/articles/managing-intrusion-detection-systems-large-organizations-part-one
https://www.symantec.com/connect/articles/managing-intrusion-detection-systems-large-organizations-part-one
https://www.zeek.org/
https://www.zeek.org/

Reinhardt: Real-time Reconfigurable Hardware Architecture for Regular Expression Matching in DPI ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Appendix A. Converting a regex pattern to Reinhardt logic

5

4

3

2

Regex pattern# NFA Reinhardt Logic

1

a b

a bε

ε c d

a bε

ε c d

ε

a bε

ε

ε
c d

ε

X

ab

ab

cd

ab

cd

ab

cd

X(ab|cd)+X

(ab|cd)+

ab|cd

ab cd

ab

ab

cd

a b

c d

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Taejune Park, Jaehyun Nam, Seung Ho Na, Jaewoong Chung, and Seungwon Shin

do
ne

9

8

7

Regex pattern# NFA Reinhardt Logic

6

a bε

ε
ε ε

c d

ε

X{1,3} [0-9] ε

ε

(ab|cd)+X{1,3}[0-9]*

(ab|cd)+X{1,3}[0-9]*

(ab|cd)+X{1,3}[0-9]*

(ab|cd)+X{1,3}[0-9]

(ab|cd)+X{1,3}

ab

cd

X 1 ≤ n ≤ 3

ab

cd

X 1 ≤ n ≤ 3

[0-9]

ab

cd

X 1 ≤ n ≤ 3

[0-9]

ab

cd

X 1 ≤ n ≤ 3

[0-9]

ab

cd

X 1 ≤ n ≤ 3

[0-9]

a bε

ε
ε ε

c d

ε

X{1,3} [0-9] ε

ε

a bε

ε

ε
c d

ε

X{1,3} [0-9] ε

ε

a bε

ε

ε
c d

ε

X{1,3} [0-9]

a bε

ε

ε
c d

ε

X{1,3}

ε

ε

ε

Converting a regex pattern ‘(ab|cd)+X1,3[0-9]*’ to Reinhardt logic

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Performance Degradation in REM
	2.2 Accelerating REM via Hardware (FPGA)
	2.3 Challenges in FPGA-based REM
	2.4 Near Real-time Rule Update in DPI

	3 Design
	3.1 Reinhardt Core
	3.2 Converting Regex to Reinhardt Cell Logic
	3.3 Pattern Deployment Breakdown
	3.4 Memory and Input queue
	3.5 Host-FPGA communication

	4 Implementation
	5 Evaluation
	5.1 Performance Measurement
	5.2 Regex Pattern Deployment
	5.3 Comparison with DPDK-Hyperscan

	6 Case study: NIDS and Snort Acceleration
	6.1 NIDS/IPS using Reinhardt
	6.2 PCRE Replacement in Snort IDS

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

